Project description:BackgroundSubphenotypes have been identified in patients with sepsis and ARDS and are associated with different outcomes and responses to therapies.Research questionCan unique subphenotypes be identified among critically ill patients with COVID-19?Study design and methodsUsing data from a multicenter cohort study that enrolled critically ill patients with COVID-19 from 67 hospitals across the United States, we randomly divided centers into discovery and replication cohorts. We used latent class analysis independently in each cohort to identify subphenotypes based on clinical and laboratory variables. We then analyzed the associations of subphenotypes with 28-day mortality.ResultsLatent class analysis identified four subphenotypes (SP) with consistent characteristics across the discovery (45 centers; n = 2,188) and replication (22 centers; n = 1,112) cohorts. SP1 was characterized by shock, acidemia, and multiorgan dysfunction, including acute kidney injury treated with renal replacement therapy. SP2 was characterized by high C-reactive protein, early need for mechanical ventilation, and the highest rate of ARDS. SP3 showed the highest burden of chronic diseases, whereas SP4 demonstrated limited chronic disease burden and mild physiologic abnormalities. Twenty-eight-day mortality in the discovery cohort ranged from 20.6% (SP4) to 52.9% (SP1). Mortality across subphenotypes remained different after adjustment for demographics, comorbidities, organ dysfunction and illness severity, regional and hospital factors. Compared with SP4, the relative risks were as follows: SP1, 1.67 (95% CI, 1.36-2.03); SP2, 1.39 (95% CI, 1.17-1.65); and SP3, 1.39 (95% CI, 1.15-1.67). Findings were similar in the replication cohort.InterpretationWe identified four subphenotypes of COVID-19 critical illness with distinct patterns of clinical and laboratory characteristics, comorbidity burden, and mortality.
Project description:COVID-19-associated respiratory failure offers the unprecedented opportunity to evaluate the differential host response to a uniform pathogenic insult. Understanding whether there are distinct subphenotypes of severe COVID-19 may offer insight into its pathophysiology. Sequential Organ Failure Assessment (SOFA) score is an objective and comprehensive measurement that measures dysfunction severity of six organ systems, i.e., cardiovascular, central nervous system, coagulation, liver, renal, and respiration. Our aim was to identify and characterize distinct subphenotypes of COVID-19 critical illness defined by the post-intubation trajectory of SOFA score. Intubated COVID-19 patients at two hospitals in New York city were leveraged as development and validation cohorts. Patients were grouped into mild, intermediate, and severe strata by their baseline post-intubation SOFA. Hierarchical agglomerative clustering was performed within each stratum to detect subphenotypes based on similarities amongst SOFA score trajectories evaluated by Dynamic Time Warping. Distinct worsening and recovering subphenotypes were identified within each stratum, which had distinct 7-day post-intubation SOFA progression trends. Patients in the worsening suphenotypes had a higher mortality than those in the recovering subphenotypes within each stratum (mild stratum, 29.7% vs. 10.3%, p = 0.033; intermediate stratum, 29.3% vs. 8.0%, p = 0.002; severe stratum, 53.7% vs. 22.2%, p < 0.001). Pathophysiologic biomarkers associated with progression were distinct at each stratum, including findings suggestive of inflammation in low baseline severity of illness versus hemophagocytic lymphohistiocytosis in higher baseline severity of illness. The findings suggest that there are clear worsening and recovering subphenotypes of COVID-19 respiratory failure after intubation, which are more predictive of outcomes than baseline severity of illness. Distinct progression biomarkers at differential baseline severity of illness suggests a heterogeneous pathobiology in the progression of COVID-19 respiratory failure.
Project description:Infections caused by SARS-CoV-2 may cause a severe disease, termed COVID-19, with significant mortality. Host responses to this infection, mainly in terms of systemic inflammation, have emerged as key pathogenetic mechanisms, and their modulation is the only therapeutic strategy that has shown a mortality benefit. Herein, we used peripheral blood transcriptomes of critically-ill COVID-19 patients obtained at admission in an Intensive Care Unit, to identify two clusters that, in spite of no major clinical differences, have different gene expression profiles that reveal different underlying pathogenetic mechanisms and ultimately have different ICU outcome. A transcriptomic signature was used to identify these clusters in an external validation cohort, yielding a similar result. These results illustrate the potential of transcriptomic profiles to identify patient endotypes and point to relevant pathogenetic mechanisms in COVID-19.
Project description:Infections caused by SARS-CoV-2 may cause a severe disease, termed COVID-19, with significant mortality. Host responses to this infection, mainly in terms of systemic inflammation, have emerged as key pathogenetic mechanisms, and their modulation is the only therapeutic strategy that has shown a mortality benefit. Herein, we used peripheral blood transcriptomes of critically-ill COVID-19 patients obtained at admission in an Intensive Care Unit, to identify two clusters that, in spite of no major clinical differences, have different gene expression profiles that reveal different underlying pathogenetic mechanisms and ultimately have different ICU outcome. A transcriptomic signature was used to identify these clusters in an external validation cohort, yielding a similar result. These results illustrate the potential of transcriptomic profiles to identify patient endotypes and point to relevant pathogenetic mechanisms in COVID-19.
Project description:Infections caused by SARS-CoV-2 may cause a severe disease, termed COVID-19, with significant mortality. Host responses to this infection, mainly in terms of systemic inflammation, have emerged as key pathogenetic mechanisms, and their modulation is the only therapeutic strategy that has shown a mortality benefit. Herein, we used peripheral blood transcriptomes of critically-ill COVID-19 patients obtained at admission in an Intensive Care Unit, to identify two clusters that, in spite of no major clinical differences, have different gene expression profiles that reveal different underlying pathogenetic mechanisms and ultimately have different ICU outcome. A transcriptomic signature was used to identify these clusters in an external validation cohort, yielding a similar result. These results illustrate the potential of transcriptomic profiles to identify patient endotypes and point to relevant pathogenetic mechanisms in COVID-19.
Project description:Total plasma IgA glycosylation was compared between healthy volunteers and volunteers suffering fromo infections with either the influenza A virus or the severe acute respiratory syndrome corona virus 2. Data from functional assays of the same plasma samples, such as neutrophil extracellular trap formation is also available.
Project description:The current coronavirus pandemic (COVID-19), caused by SARS-CoV-2, has had devastating effects on the global health and economic system. The cellular and molecular mediators of both the innate and adaptive immune systems are critical in controlling SARS-CoV-2 infections. However, dysregulated inflammatory responses and imbalanced adaptive immunity may contribute to tissue destruction and pathogenesis of the disease. Important mechanisms in severe forms of COVID-19 include overproduction of inflammatory cytokines, impairment of type I IFN response, overactivation of neutrophils and macrophages, decreased frequencies of DC cells, NK cells and ILCs, complement activation, lymphopenia, Th1 and Treg hypoactivation, Th2 and Th17 hyperactivation, as well as decreased clonal diversity and dysregulated B lymphocyte function. Given the relationship between disease severity and an imbalanced immune system, scientists have been led to manipulate the immune system as a therapeutic approach. For example, anti-cytokine, cell, and IVIG therapies have received attention in the treatment of severe COVID-19. In this review, the role of immunity in the development and progression of COVID-19 is discussed, focusing on molecular and cellular aspects of the immune system in mild vs. severe forms of the disease. Moreover, some immune- based therapeutic approaches to COVID-19 are being investigated. Understanding key processes involved in the disease progression is critical in developing therapeutic agents and optimizing related strategies.
Project description:Single-cell RNA-sequencing reveals a shift from focused IFN alpha-driven signals in COVID-19 ICU patients who survive to broad pro-inflammatory responses in fatal COVID-19 – a feature not observed in severe influenza. We conclude that fatal COVID-19 infection is driven by uncoordinated inflammatory responses that drive a hierarchy of T cell activation, elements of which can serve as prognostic indicators and potential targets for immune intervention.
Project description:RationaleSystemic activation of procoagulant and inflammatory mechanisms has been implicated in the pathogenesis of COVID-19. Knowledge of activation of these host response pathways in the lung compartment of COVID-19 patients is limited.ObjectivesTo evaluate local and systemic activation of coagulation and interconnected inflammatory responses in critically ill COVID-19 patients with persistent acute respiratory distress syndrome.MethodsPaired bronchoalveolar lavage fluid and plasma samples were obtained from 17 patients with COVID-19 related persistent acute respiratory distress syndrome (mechanical ventilation > 7 days) 1 and 2 weeks after start mechanical ventilation and compared with 8 healthy controls. Thirty-four host response biomarkers stratified into five functional domains (coagulation, complement system, cytokines, chemokines and growth factors) were measured.Measurements and main resultsIn all patients, all functional domains were activated, especially in the bronchoalveolar compartment, with significantly increased levels of D-dimers, thrombin-antithrombin complexes, soluble tissue factor, C1-inhibitor antigen and activity levels, tissue type plasminogen activator, plasminogen activator inhibitor type I, soluble CD40 ligand and soluble P-selectin (coagulation), next to activation of C3bc and C4bc (complement) and multiple interrelated cytokines, chemokines and growth factors. In 10 patients in whom follow-up samples were obtained between 3 and 4 weeks after start mechanical ventilation many bronchoalveolar and plasma host response biomarkers had declined.ConclusionsCritically ill, ventilated patients with COVID-19 show strong responses relating to coagulation, the complement system, cytokines, chemokines and growth factors in the bronchoalveolar compartment. These results suggest a local pulmonary rather than a systemic procoagulant and inflammatory "storm" in severe COVID-19.