Project description:Monoclonal antibodies (mAbs) have been known since the 1970s. However, their therapeutic potential in the medical field has recently emerged, with the advancement of manufacturing techniques. Initially exploited mainly in the oncology field, mAbs have become increasingly relevant in Infectious Diseases. Numerous mAbs have been developed against SARS-CoV 2 and have proven their effectiveness, especially in the management of the mild-to-moderate disease. In this review, we describe the monoclonal antibodies currently authorized for the treatment of the coronavirus disease 19 (COVID-19) and offer an insight into the clinical trials that led to their approval. We discuss the mechanisms of action and methods of administration as well as the prophylactic and therapeutic labelled indications (both in outpatient and hospital settings). Furthermore, we address the critical issues regarding mAbs, focusing on their effectiveness against the variants of concern (VoC) and their role now that a large part of the population has been vaccinated. The purpose is to offer the clinician an up-to-date overview of a therapeutic tool that could prove decisive in treating patients at high risk of progression to severe disease.
Project description:Background: Administration of potent anti-receptor-binding domain (RBD) monoclonal antibodies has been shown to curtail viral shedding and reduce hospitalization in patients with SARS-CoV-2 infection. However, the structure-function analysis of potent human anti-RBD monoclonal antibodies and its links to the formulation of antibody cocktails remains largely elusive. Methods: Previously, we isolated a panel of neutralizing anti-RBD monoclonal antibodies from convalescent patients and showed their neutralization efficacy in vitro. Here, we elucidate the mechanism of action of antibodies and dissect antibodies at the epitope level, which leads to a formation of a potent antibody cocktail. Results: We found that representative antibodies which target non-overlapping epitopes are effective against wild type virus and recently emerging variants of concern, whilst being encoded by antibody genes with few somatic mutations. Neutralization is associated with the inhibition of binding of viral RBD to ACE2 and possibly of the subsequent fusion process. Structural analysis of representative antibodies, by cryo-electron microscopy and crystallography, reveals that they have some unique aspects that are of potential value while sharing some features in common with previously reported neutralizing monoclonal antibodies. For instance, one has a common VH 3-53 public variable region yet is unusually resilient to mutation at residue 501 of the RBD. We evaluate the in vivo efficacy of an antibody cocktail consisting of two potent non-competing anti-RBD antibodies in a Syrian hamster model. We demonstrate that the cocktail prevents weight loss, reduces lung viral load and attenuates pulmonary inflammation in hamsters in both prophylactic and therapeutic settings. Although neutralization of one of these antibodies is abrogated by the mutations of variant B.1.351, it is also possible to produce a bi-valent cocktail of antibodies both of which are resilient to variants B.1.1.7, B.1.351 and B.1.617.2. Conclusions: These findings support the up-to-date and rational design of an anti-RBD antibody cocktail as a therapeutic candidate against COVID-19.
Project description:The mutants resulted from the ongoing SARS-CoV-2 epidemic have showed resistance to antibody neutralization and vaccine-induced immune response. The present study isolated and identified two novel SARS-CoV-2 neutralizing antibodies (nAbs) from convalescent COVID-19 patients. These two nAbs (XG81 and XG83) were then systemically compared with nine nAbs that were reconstructed by using published data, and revealed that, even though these two nAbs shared targeting epitopes on spike protein, they were different from any of the nine nAbs. Compared with XG81, XG83 exhibited a higher RBD binding affinity and neutralization potency against wild-typed pseudovirus, variant pseudoviruses with mutated spike proteins, such as D614G, E484Q, and A475V, as well as the authentic SARS-CoV-2 virus. To explore potential broadly neutralizing antibodies, heavy and light chains from all 18 nAbs (16 published nAbs, XG81 and XG83) were cross-recombined, and some of the functional antibodies were screened and studied for RBD binding affinity, and neutralizing activity against pseudovirus and the authentic SARS-CoV-2 virus. The results demonstrated that several recombined antibodies had a more potent neutralization activity against variant pseudoviruses compared with the originally paired Abs. Taken together, the novel neutralizing antibodies identified in this study are a likely valuable addition to candidate antibody drugs for the development of clinical therapeutic agents against SARS-CoV-2 to minimize mutational escape.
Project description:The COVID-19 pandemic urgently needs therapeutic and prophylactic interventions. Here we report the rapid identification of SARS-CoV-2 neutralizing antibodies by high-throughput single-cell RNA and VDJ sequencing of antigen-enriched B cells from 60 convalescent patients.
Project description:The outbreaks of severe acute respiratory syndrome (SARS) and Coronavirus Disease 2019 (COVID-19) caused by SARS-CoV and SARS-CoV-2, respectively, have posed severe threats to global public health and the economy. Treatment and prevention of these viral diseases call for the research and development of human neutralizing monoclonal antibodies (NMAbs). Scientists have screened neutralizing antibodies using the virus receptor-binding domain (RBD) as an antigen, indicating that RBD contains multiple conformational neutralizing epitopes, which are the main structural domains for inducing neutralizing antibodies and T-cell immune responses. This review summarizes the structure and function of RBD and RBD-specific NMAbs against SARS-CoV and SARS-CoV-2 currently under development.
Project description:A wide range of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing monoclonal antibodies (mAbs) have been reported, most of which target the spike glycoprotein. Therapeutic implementation of these antibodies has been challenged by emerging SARS-CoV-2 variants harboring mutated spike versions. Consequently, re-assessment of previously identified mAbs is of high priority. Four previously selected mAbs targeting non-overlapping epitopes are now evaluated for binding potency to mutated RBD versions, reported to mediate escape from antibody neutralization. In vitro neutralization potencies of these mAbs, and two NTD-specific mAbs, are evaluated against two frequent SARS-CoV-2 variants of concern, the B.1.1.7 Alpha and the B.1.351 Beta. Furthermore, we demonstrate therapeutic potential of three selected mAbs by treatment of K18-human angiotensin-converting enzyme 2 (hACE2) transgenic mice 2 days post-infection with each virus variant. Thus, despite the accumulation of spike mutations, the highly potent MD65 and BL6 mAbs retain their ability to bind the prevalent viral mutants, effectively protecting against B.1.1.7 and B.1.351 variants.
Project description:Omicron was designated by the WHO as a VOC on 26 November 2021, only 4 days after its sequence was first submitted. However, the impact of Omicron on current antibodies and vaccines remains unknown and evaluations are still a few weeks away. We analysed the mutations in the Omicron variant against epitopes. In our database, 132 epitopes of the 120 antibodies are classified into five groups, namely NTD, RBD-1, RBD-2, RBD-3, and RBD-4. The Omicron mutations impact all epitopes in NTD, RBD-1, RBD-2, and RBD-3, with no antibody epitopes spared by these mutations. Only four out of 120 antibodies may confer full resistance to mutations in the Omicron spike, since all antibodies in these three groups contain one or more epitopes that are affected by these mutations. Of all antibodies under EUA, the neutralisation potential of Etesevimab, Bamlanivimab, Casirivimab, Imdevima, Cilgavimab, Tixagevimab, Sotrovimab, and Regdanvimab might be dampened to varying degrees. Our analysis suggests the impact of Omicron on current therapeutic antibodies by the Omicron spike mutations may also apply to current COVID-19 vaccines.
Project description:A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a global pandemic of coronavirus disease 19. Coronaviruses, including SARS-CoV-2, use RNA-dependent RNA polymerase (RdRP) for viral replication and transcription. Since RdRP is a promising therapeutic target for infection of SARS-CoV-2, it would be beneficial to develop new experimental tools for analysis of the RdRP reaction of SARS-CoV-2. Here, we succeeded to develop novel mouse monoclonal antibodies (mAbs) that recognize SARS-CoV-2 nsp12, catalytic subunit of the RdRP. These anti-nsp12 mAbs, RdMab-2, -13, and -20, specifically recognize SARS-CoV-2 nsp12 by western blotting analysis, while they exhibit less or no cross-reactivity to SARS-CoV nsp12. In addition, SARS-CoV-2 nsp12 was successfully immunoprecipitated using RdMab-2 from lysates of cells overexpressing SARS-CoV-2 nsp12. RdMab-2 was able to detect SARS-CoV-2 nsp12 transiently expressed in established culture cells such as HEK293T cells by indirect immunofluorescence technique. These novel mAbs against SARS-CoV-2 nsp12 are useful to elucidate the RdRP reaction of SARS-CoV-2 and biological cell response against it.
Project description:Even several months after the start of a massive vaccination campaign against COVID-19, mortality and hospital admission are still high in many countries. Monoclonal antibodies against SARS-CoV-2 are the ideal complement to vaccination in infected subjects who are at high risk for progression to severe disease. Based on data of the Italian Ministry of Health, in the period April-August 2021, monoclonal antibodies were prescribed to 6322 patients. In the same period, 70,022 patients over 70 years old became infected with SARS-CoV-2. Even considering that all monoclonal antibodies were prescribed to this category of patients, we calculated that only 9% of these subjects received the treatment. Moreover, using efficacy data provided by clinal trials, we estimated the potential benefit in terms of reduction of hospital admissions and deaths. Considering utilisation of monoclonal antibodies in half infected patients over 70 years, we estimated that hospital admissions and deaths might have been reduced by 7666 and 3507, respectively. Finally, we calculated the economic benefit of monoclonal use. In the same scenario (50% use of monoclonal antibodies to patients over 70), we estimated potential savings of USD 117,410,105. In conclusion, monoclonal antibodies were used in a small proportion of patients over 70 in Italy. A more extensive use might have resulted in a marked decrease in hospital admissions, deaths and in conspicuous saving for the health system.
Project description:The recent coronavirus outbreak has spread worldwide, with the exception of Antarctica, causing serious social and economic disruption. All disciplines of the science community are driven to confront the impact of the COVID-19 pandemic, as currently, there is neither prophylactic nor therapeutic treatments available. Due to the urgency of the situation, various research strategies are ongoing, in order to evaluate the therapeutic efficacy of repurposed and experimental drugs. The present review presents the most promising repurposed regimens, which may be used for the treatment of COVID-19. The drugs/bioactive substances presented herein belong to diverse therapeutic classes, including antimalarial, cardioprotective, angiotensin-converting enzyme 2 inhibitors, antiviral, anti-inflammatory and antiparasitic drugs. Therapeutic perspectives of vaccination and passive immunization are also reviewed.