Unknown

Dataset Information

0

Microglial lnc-U90926 facilitates neutrophil infiltration in ischemic stroke via MDH2/CXCL2 axis.


ABSTRACT: Dysregulated long non-coding RNAs (lncRNAs) have been shown to contribute to the pathogenesis of ischemic stroke. However, the potential role of lncRNAs in post-stroke microglial activation remains largely unknown. Here, we uncovered that lncRNA-U90926 was significantly increased in microglia exposed to ischemia/reperfusion both in vivo and in vitro. In addition, adenovirus-associated virus (AAV)-mediated microglial U90926 silencing alleviated neurological deficits and reduced infarct volume in experimental stroke mice. Microglial U90926 knockdown could reduce the infiltration of neutrophils into ischemic lesion site, which might be attributed to the downregulation of C-X-C motif ligand 2 (CXCL2). Mechanistically, U90926 directly bound to malate dehydrogenase 2 (MDH2) and competitively inhibited the binding of MDH2 to the CXCL2 3' untranslated region (UTR), thus protecting against MDH2-mediated decay of CXCL2 mRNA. Taken together, our study demonstrated that microglial U90926 aggravated ischemic brain injury via facilitating neutrophil infiltration, suggesting that U90926 might be a potential biomarker and therapeutic target for ischemic stroke.

SUBMITTER: Chen J 

PROVIDER: S-EPMC8417913 | biostudies-literature | 2021 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Microglial lnc-U90926 facilitates neutrophil infiltration in ischemic stroke via MDH2/CXCL2 axis.

Chen Jian J   Jin Jiali J   Zhang Xi X   Yu Hailong H   Zhu Xiaolei X   Yu Linjie L   Chen Yanting Y   Liu Pinyi P   Dong Xiaohong X   Cao Xiang X   Gu Yue Y   Bao Xinyu X   Xia Shengnan S   Xu Yun Y  

Molecular therapy : the journal of the American Society of Gene Therapy 20210423 9


Dysregulated long non-coding RNAs (lncRNAs) have been shown to contribute to the pathogenesis of ischemic stroke. However, the potential role of lncRNAs in post-stroke microglial activation remains largely unknown. Here, we uncovered that lncRNA-U90926 was significantly increased in microglia exposed to ischemia/reperfusion both in vivo and in vitro. In addition, adenovirus-associated virus (AAV)-mediated microglial U90926 silencing alleviated neurological deficits and reduced infarct volume in  ...[more]

Similar Datasets

2020-10-24 | GSE159903 | GEO
| PRJNA670852 | ENA
| S-EPMC8521684 | biostudies-literature
2021-09-26 | GSE156949 | GEO
| S-EPMC8490939 | biostudies-literature
| S-EPMC6513908 | biostudies-literature
| S-EPMC10673714 | biostudies-literature
2024-12-15 | GSE191008 | GEO
| S-EPMC11529979 | biostudies-literature
| S-EPMC10104629 | biostudies-literature