Project description:BackgroundThere are limited data regarding prolonged extracorporeal membrane oxygenation (ECMO) support, despite increase in ECMO use and duration in patients with respiratory failure. The objective of this study was to investigate the outcomes of severe acute respiratory failure patients supported with prolonged ECMO for more than 28 days.MethodsBetween January 2012 and December 2015, all consecutive adult patients with severe acute respiratory failure who underwent ECMO for respiratory support at 16 tertiary or university-affiliated hospitals in South Korea were enrolled retrospectively. The patients were divided into two groups: short-term group defined as ECMO for ⩽28 days and long-term group defined as ECMO for more than 28 days. In-hospital and 6-month mortalities were compared between the two groups.ResultsA total of 487 patients received ECMO support for acute respiratory failure during the study period, and the median support duration was 8 days (4-20 days). Of these patients, 411 (84.4%) received ECMO support for ⩽28 days (short-term group), and 76 (15.6%) received support for more than 28 days (long-term group). The proportion of acute exacerbation of interstitial lung disease as a cause of respiratory failure was higher in the long-term group than in the short-term group (22.4% versus 7.5%, p < 0.001), and the duration of mechanical ventilation before ECMO was longer (4 days versus 1 day, p < 0.001). The hospital mortality rate (60.8% versus 69.7%, p = 0.141) and the 6-month mortality rate (66.2% versus 74.0%, p = 0.196) were not different between the two groups. ECMO support longer than 28 days was not associated with hospital mortality in univariable and multivariable analyses.ConclusionsShort- and long-term survival rates among patients receiving ECMO support for more than 28 days for severe acute respiratory failure were not worse than those among patients receiving ECMO for 28 days or less.
Project description:In patients with severe respiratory failure, either hypoxemic or hypercapnic, life support with mechanical ventilation alone can be insufficient to meet their needs, especially if one tries to avoid ventilator settings that can cause injury to the lungs. In those patients, extracorporeal membrane oxygenation (ECMO), which is also very effective in removing carbon dioxide from the blood, can provide life support, allowing the application of protective lung ventilation. In this review article, we aim to explore some of the most relevant aspects of using ECMO for respiratory support. We discuss the history of respiratory support using ECMO in adults, as well as the clinical evidence; costs; indications; installation of the equipment; ventilator settings; daily care of the patient and the system; common troubleshooting; weaning; and discontinuation. RESUMO Em pacientes com insuficiência respiratória grave (hipoxêmica ou hipercápnica), o suporte somente com ventilação mecânica pode ser insuficiente para suas necessidades, especialmente quando se tenta evitar o uso de parâmetros ventilatórios que possam causar danos aos pulmões. Nesses pacientes, extracorporeal membrane oxygenation (ECMO, oxigenação extracorpórea por membrana), que também é muito eficaz na remoção de dióxido de carbono do sangue, pode manter a vida, permitindo o uso de ventilação pulmonar protetora. No presente artigo de revisão, objetivamos explorar alguns dos aspectos mais relevantes do suporte respiratório por ECMO. Discutimos a história do suporte respiratório por ECMO em adultos; evidências clínicas; custos; indicações; instalação do equipamento; parâmetros ventilatórios; cuidado diário do paciente e do sistema; solução de problemas comuns; desmame e descontinuação.
Project description:The study aims to assess the impact of the second COVID-19 pandemic wave on migraine characteristics. This is an observational cross-sectional study conducted on migraine patients previously interviewed during the first Italian pandemic outbreak. A second structured telephone interview was conducted between 20 November 2020 and 18 January 2021. We compared migraine characteristics among T0 (before pandemic), T1 (during the first pandemic phase), and T2 (during the second pandemic phase). Among the 433 patients interviewed during the first pandemic phase, 304 cases were finally considered. One hundred forty-eight patients had a control visit between March 2020 and December 2020, 120 had an in-person visit, 14 by phone, the remainder used telemedicine software provided by the hospital. Frequency of headache, number of symptomatic drugs and headache intensity worsened during T2, compared to T0 and T1, especially in episodic migraine. Headache intensity increased relating to the negative emotional impact of the pandemic. Migraine management during the pandemic did not influence the clinical outcome. The prolongation of the pandemic seems to have a negative impact on migraine evolution. The arousal and negative psychological behavior toward the COVID-19 outbreak seem to worsen migraine.
Project description:COVID-19 dramatically influenced mortality worldwide, in Italy as well, the first European country to experience the Sars-Cov2 epidemic. Many countries reported a two-wave pattern of COVID-19 deaths; however, studies comparing the two waves are limited. The objective of the study was to compare all-cause excess mortality between the two waves that occurred during the year 2020 using nationwide data. All-cause excess mortalities were estimated using negative binomial models with time modeled by quadratic splines. The models were also applied to estimate all-cause excess deaths "not directly attributable to COVD-19", i.e., without a previous COVID-19 diagnosis. During the first wave (25th February-31st May), we estimated 52,437 excess deaths (95% CI: 49,213-55,863) and 50,979 (95% CI: 50,333-51,425) during the second phase (10th October-31st December), corresponding to percentage 34.8% (95% CI: 33.8%-35.8%) in the second wave and 31.0% (95%CI: 27.2%-35.4%) in the first. During both waves, all-cause excess deaths percentages were higher in northern regions (59.1% during the first and 42.2% in the second wave), with a significant increase in the rest of Italy (from 6.7% to 27.1%) during the second wave. Males and those aged 80 or over were the most hit groups with an increase in both during the second wave. Excess deaths not directly attributable to COVID-19 decreased during the second phase with respect to the first phase, from 10.8% (95% CI: 9.5%-12.4%) to 7.7% (95% CI: 7.5%-7.9%), respectively. The percentage increase in excess deaths from all causes suggests in Italy a different impact of the SARS-CoV-2 virus during the second wave in 2020. The decrease in excess deaths not directly attributable to COVID-19 may indicate an improvement in the preparedness of the Italian health care services during this second wave, in the detection of COVID-19 diagnoses and/or clinical practice toward the other severe diseases.
Project description:Extracorporeal life support (ECLS) is a means to support patients with acute respiratory failure. Initially, recommendations to treat severe cases of pandemic coronavirus disease 2019 (COVID-19) with ECLS have been restrained. In the meantime, ECLS has been shown to produce similar outcomes in patients with severe COVID-19 compared to existing data on ARDS mortality. We performed an international email survey to assess how ECLS providers worldwide have previously used ECLS during the treatment of critically ill patients with COVID-19. A questionnaire with 45 questions (covering, e.g., indication, technical aspects, benefit, and reasons for treatment discontinuation), mostly multiple choice, was distributed by email to ECLS centers. The survey was approved by the European branch of the Extracorporeal Life Support Organization (ELSO); 276 ECMO professionals from 98 centers in 30 different countries on four continents reported that they employed ECMO for very severe COVID-19 cases, mostly in veno-venous configuration (87%). The most common reason to establish ECLS was isolated hypoxemic respiratory failure (50%), followed by a combination of hypoxemia and hypercapnia (39%). Only a small fraction of patients required veno-arterial cannulation due to heart failure (3%). Time on ECLS varied between less than 2 and more than 4 weeks. The main reason to discontinue ECLS treatment prior to patient's recovery was lack of clinical improvement (53%), followed by major bleeding, mostly intracranially (13%). Only 4% of respondents reported that triage situations, lack of staff or lack of oxygenators, were responsible for discontinuation of ECLS support. Most ECLS physicians (51%, IQR 30%) agreed that patients with COVID-19-induced ARDS (CARDS) benefitted from ECLS. Overall mortality of COVID-19 patients on ECLS was estimated to be about 55%. ECLS has been utilized successfully during the COVID-19 pandemic to stabilize CARDS patients in hypoxemic or hypercapnic lung failure. Age and multimorbidity limited the use of ECLS. Triage situations were rarely a concern. ECLS providers stated that patients with severe COVID-19 benefitted from ECLS.
Project description:The use of ketamine infusion for sedation/analgesia in patients receiving extracorporeal membrane oxygenation (ECMO) therapy has not been described. The aims of this retrospective cohort study were to explore whether ketamine infusion for patients requiring ECMO therapy was associated with altered RASS scores, decreased concurrent sedative or opioid use, or with changes in vasopressor requirements. All patients on ECMO who received ketamine infusions in addition to sedative and/or opioid infusions between December 2013 and October 2014 at Barnes-Jewish Hospital in St. Louis were retrospectively identified. Patient characteristics and process of care data were collected. A total of 26 ECMO patients receiving ketamine infusion were identified. The median (inter quartile range [range]) age was 40 years (30-52 [25-66]) with 62% male. The median starting infusion rate of ketamine was 50 mg/hr (30-50 [6-150]) and it was continued for a median duration of 9 days (4-14 [0.2-21]). Prior to ketamine, 14/26 patients were receiving vasopressor infusions to maintain hemodynamic stability. Ketamine initiation was associated with a decrease in vasopressor requirement in 11/26 patients within two hours, and 0/26 required an increase (p<0.001). All patients were receiving sedative and/or opioid infusions at the time of ketamine initiation; 9/26 had a decrease in these infusions within two hours of ketamine initiation, and 1/26 had an increase (p=0.02; odds ratio for decrease to increase = 9; 95% CI, 1.14 to 71.04). The median (IQR[range]) RASS score 24 hours before ketamine initiation was -4 (-3 to -5, [0 to -5]) and after ketamine was -4 (-3 to -4 [-1 to -5]) ( P = 0.614). Ketamine infusion can be used as an adjunctive sedative agent in patients receiving ECMO and may decrease concurrent sedative and/or opioid infusions without altering RASS scores. The hemodynamic effects of ketamine may provide the benefit of decreasing vasopressor requirements.
Project description:ObjectivesAlthough acute brain injury is common in patients receiving extracorporeal membrane oxygenation, little is known regarding the mechanism and predictors of ischemic and hemorrhagic stroke. We aimed to determine the risk factors and outcomes of each ischemic and hemorrhagic stroke in patients with venoarterial extracorporeal membrane oxygenation support.DesignRetrospective analysis.SettingData reported to the Extracorporeal Life Support Organization by 310 extracorporeal membrane oxygenation centers from 2013 to 2017.PatientsPatients more than 18 years old supported with a single run of venoarterial extracorporeal membrane oxygenation.InterventionsNone.Measurements and main resultsOf 10,342 venoarterial extracorporeal membrane oxygenation patients, 401 (3.9%) experienced ischemic stroke and 229 (2.2%) experienced hemorrhagic stroke. Reported acute brain injury during venoarterial extracorporeal membrane oxygenation decreased from 10% to 6% in 5 years. Overall in-hospital mortality was 56%, but rates were higher when ischemic stroke and hemorrhagic stroke were present (76% and 86%, respectively). In multivariable analysis, lower pre-extracorporeal membrane oxygenation pH (adjusted odds ratio, 0.21; 95% CI, 0.09-0.49; p < 0.001), higher PO2 on first day of extracorporeal membrane oxygenation (adjusted odds ratio, 1.01; 95% CI, 1.00-1.02; p = 0.009), higher rates of extracorporeal membrane oxygenation circuit mechanical failure (adjusted odds ratio, 1.33; 95% CI, 1.02-1.74; p = 0.03), and renal replacement therapy (adjusted odds ratio, 1.49; 95% CI, 1.14-1.94; p = 0.004) were independently associated with ischemic stroke. Female sex (adjusted odds ratio, 1.61; 95% CI, 1.16-2.22; p = 0.004), extracorporeal membrane oxygenation duration (adjusted odds ratio, 1.01; 95% CI, 1.00-1.03; p = 0.02), renal replacement therapy (adjusted odds ratio, 1.81; 95% CI, 1.30-2.52; p < 0.001), and hemolysis (adjusted odds ratio, 1.87; 95% CI, 1.11-3.16; p = 0.02) were independently associated with hemorrhagic stroke.ConclusionsDespite a decrease in the prevalence of acute brain injury in recent years, mortality rates remain high when ischemic and hemorrhagic strokes are present. Future research is necessary on understanding the timing of associated risk factors to promote prevention and management strategy.
Project description:India has suffered from the second wave of COVID-19 pandemic since March 2021. This wave of the outbreak has been more serious than the first wave pandemic in 2020, which suggests that some new transmission characteristics may exist. COVID-19 is transmitted through droplets, aerosols, and contact with infected surfaces. Air pollutants are also considered to be associated with COVID-19 transmission. However, the roles of indoor transmission in the COVID-19 pandemic and the effects of these factors in indoor environments are still poorly understood. Our study focused on reveal the role of indoor transmission in the second wave of COVID-19 pandemic in India. Our results indicated that human mobility in the home environment had the highest relative influence on COVID-19 daily growth rate in the country. The COVID-19 daily growth rate was significantly positively correlated with the residential percent rate in most state-level areas in India. A significant positive nonlinear relationship was found when the residential percent ratio ranged from 100 to 120%. Further, epidemic dynamics modelling indicated that a higher proportion of indoor transmission in the home environment was able to intensify the severity of the second wave of COVID-19 pandemic in India. Our findings suggested that more attention should be paid to the indoor transmission in home environment. The public health strategies to reduce indoor transmission such as ventilation and centralized isolation will be beneficial to the prevention and control of COVID-19.