Project description:BackgroundThere are limited data regarding prolonged extracorporeal membrane oxygenation (ECMO) support, despite increase in ECMO use and duration in patients with respiratory failure. The objective of this study was to investigate the outcomes of severe acute respiratory failure patients supported with prolonged ECMO for more than 28 days.MethodsBetween January 2012 and December 2015, all consecutive adult patients with severe acute respiratory failure who underwent ECMO for respiratory support at 16 tertiary or university-affiliated hospitals in South Korea were enrolled retrospectively. The patients were divided into two groups: short-term group defined as ECMO for ⩽28 days and long-term group defined as ECMO for more than 28 days. In-hospital and 6-month mortalities were compared between the two groups.ResultsA total of 487 patients received ECMO support for acute respiratory failure during the study period, and the median support duration was 8 days (4-20 days). Of these patients, 411 (84.4%) received ECMO support for ⩽28 days (short-term group), and 76 (15.6%) received support for more than 28 days (long-term group). The proportion of acute exacerbation of interstitial lung disease as a cause of respiratory failure was higher in the long-term group than in the short-term group (22.4% versus 7.5%, p < 0.001), and the duration of mechanical ventilation before ECMO was longer (4 days versus 1 day, p < 0.001). The hospital mortality rate (60.8% versus 69.7%, p = 0.141) and the 6-month mortality rate (66.2% versus 74.0%, p = 0.196) were not different between the two groups. ECMO support longer than 28 days was not associated with hospital mortality in univariable and multivariable analyses.ConclusionsShort- and long-term survival rates among patients receiving ECMO support for more than 28 days for severe acute respiratory failure were not worse than those among patients receiving ECMO for 28 days or less.
Project description:In patients with severe respiratory failure, either hypoxemic or hypercapnic, life support with mechanical ventilation alone can be insufficient to meet their needs, especially if one tries to avoid ventilator settings that can cause injury to the lungs. In those patients, extracorporeal membrane oxygenation (ECMO), which is also very effective in removing carbon dioxide from the blood, can provide life support, allowing the application of protective lung ventilation. In this review article, we aim to explore some of the most relevant aspects of using ECMO for respiratory support. We discuss the history of respiratory support using ECMO in adults, as well as the clinical evidence; costs; indications; installation of the equipment; ventilator settings; daily care of the patient and the system; common troubleshooting; weaning; and discontinuation. RESUMO Em pacientes com insuficiência respiratória grave (hipoxêmica ou hipercápnica), o suporte somente com ventilação mecânica pode ser insuficiente para suas necessidades, especialmente quando se tenta evitar o uso de parâmetros ventilatórios que possam causar danos aos pulmões. Nesses pacientes, extracorporeal membrane oxygenation (ECMO, oxigenação extracorpórea por membrana), que também é muito eficaz na remoção de dióxido de carbono do sangue, pode manter a vida, permitindo o uso de ventilação pulmonar protetora. No presente artigo de revisão, objetivamos explorar alguns dos aspectos mais relevantes do suporte respiratório por ECMO. Discutimos a história do suporte respiratório por ECMO em adultos; evidências clínicas; custos; indicações; instalação do equipamento; parâmetros ventilatórios; cuidado diário do paciente e do sistema; solução de problemas comuns; desmame e descontinuação.
Project description:Extracorporeal life support (ECLS) for acute respiratory failure encompasses veno-venous extracorporeal membrane oxygenation (V-V ECMO) and extracorporeal carbon dioxide removal (ECCO2R). V-V ECMO is primarily used to treat severe acute respiratory distress syndrome (ARDS), characterized by life-threatening hypoxemia or ventilatory insufficiency with conventional protective settings. It employs an artificial lung with high blood flows, and allows improvement in gas exchange, correction of hypoxemia, and reduction of the workload on the native lung. On the other hand, ECCO2R focuses on carbon dioxide removal and ventilatory load reduction ("ultra-protective ventilation") in moderate ARDS, or in avoiding pump failure in acute exacerbated chronic obstructive pulmonary disease. Clinical indications for V-V ECLS are tailored to individual patients, as there are no absolute contraindications. However, determining the ideal timing for initiating extracorporeal respiratory support remains uncertain. Current ECLS equipment faces issues like size and durability. Innovations include intravascular lung assist devices (ILADs) and pumpless devices, though they come with their own challenges. Efficient gas exchange relies on modern oxygenators using hollow fiber designs, but research is exploring microfluidic technology to improve oxygenator size, thrombogenicity, and blood flow capacity. Coagulation management during V-V ECLS is crucial due to common bleeding and thrombosis complications; indeed, anticoagulation strategies and monitoring systems require improvement, while surface coatings and new materials show promise. Moreover, pharmacokinetics during ECLS significantly impact antibiotic therapy, necessitating therapeutic drug monitoring for precise dosing. Managing native lung ventilation during V-V ECMO remains complex, requiring a careful balance between benefits and potential risks for spontaneously breathing patients. Moreover, weaning from V-V ECMO is recognized as an area of relevant uncertainty, requiring further research. In the last decade, the concept of Extracorporeal Organ Support (ECOS) for patients with multiple organ dysfunction has emerged, combining ECLS with other organ support therapies to provide a more holistic approach for critically ill patients. In this review, we aim at providing an in-depth overview of V-V ECMO and ECCO2R, addressing various aspects of their use, challenges, and potential future directions in research and development.
Project description:COVID-19 dramatically influenced mortality worldwide, in Italy as well, the first European country to experience the Sars-Cov2 epidemic. Many countries reported a two-wave pattern of COVID-19 deaths; however, studies comparing the two waves are limited. The objective of the study was to compare all-cause excess mortality between the two waves that occurred during the year 2020 using nationwide data. All-cause excess mortalities were estimated using negative binomial models with time modeled by quadratic splines. The models were also applied to estimate all-cause excess deaths "not directly attributable to COVD-19", i.e., without a previous COVID-19 diagnosis. During the first wave (25th February-31st May), we estimated 52,437 excess deaths (95% CI: 49,213-55,863) and 50,979 (95% CI: 50,333-51,425) during the second phase (10th October-31st December), corresponding to percentage 34.8% (95% CI: 33.8%-35.8%) in the second wave and 31.0% (95%CI: 27.2%-35.4%) in the first. During both waves, all-cause excess deaths percentages were higher in northern regions (59.1% during the first and 42.2% in the second wave), with a significant increase in the rest of Italy (from 6.7% to 27.1%) during the second wave. Males and those aged 80 or over were the most hit groups with an increase in both during the second wave. Excess deaths not directly attributable to COVID-19 decreased during the second phase with respect to the first phase, from 10.8% (95% CI: 9.5%-12.4%) to 7.7% (95% CI: 7.5%-7.9%), respectively. The percentage increase in excess deaths from all causes suggests in Italy a different impact of the SARS-CoV-2 virus during the second wave in 2020. The decrease in excess deaths not directly attributable to COVID-19 may indicate an improvement in the preparedness of the Italian health care services during this second wave, in the detection of COVID-19 diagnoses and/or clinical practice toward the other severe diseases.
Project description:The study aims to assess the impact of the second COVID-19 pandemic wave on migraine characteristics. This is an observational cross-sectional study conducted on migraine patients previously interviewed during the first Italian pandemic outbreak. A second structured telephone interview was conducted between 20 November 2020 and 18 January 2021. We compared migraine characteristics among T0 (before pandemic), T1 (during the first pandemic phase), and T2 (during the second pandemic phase). Among the 433 patients interviewed during the first pandemic phase, 304 cases were finally considered. One hundred forty-eight patients had a control visit between March 2020 and December 2020, 120 had an in-person visit, 14 by phone, the remainder used telemedicine software provided by the hospital. Frequency of headache, number of symptomatic drugs and headache intensity worsened during T2, compared to T0 and T1, especially in episodic migraine. Headache intensity increased relating to the negative emotional impact of the pandemic. Migraine management during the pandemic did not influence the clinical outcome. The prolongation of the pandemic seems to have a negative impact on migraine evolution. The arousal and negative psychological behavior toward the COVID-19 outbreak seem to worsen migraine.
Project description:The use of ketamine infusion for sedation/analgesia in patients receiving extracorporeal membrane oxygenation (ECMO) therapy has not been described. The aims of this retrospective cohort study were to explore whether ketamine infusion for patients requiring ECMO therapy was associated with altered RASS scores, decreased concurrent sedative or opioid use, or with changes in vasopressor requirements. All patients on ECMO who received ketamine infusions in addition to sedative and/or opioid infusions between December 2013 and October 2014 at Barnes-Jewish Hospital in St. Louis were retrospectively identified. Patient characteristics and process of care data were collected. A total of 26 ECMO patients receiving ketamine infusion were identified. The median (inter quartile range [range]) age was 40 years (30-52 [25-66]) with 62% male. The median starting infusion rate of ketamine was 50 mg/hr (30-50 [6-150]) and it was continued for a median duration of 9 days (4-14 [0.2-21]). Prior to ketamine, 14/26 patients were receiving vasopressor infusions to maintain hemodynamic stability. Ketamine initiation was associated with a decrease in vasopressor requirement in 11/26 patients within two hours, and 0/26 required an increase (p<0.001). All patients were receiving sedative and/or opioid infusions at the time of ketamine initiation; 9/26 had a decrease in these infusions within two hours of ketamine initiation, and 1/26 had an increase (p=0.02; odds ratio for decrease to increase = 9; 95% CI, 1.14 to 71.04). The median (IQR[range]) RASS score 24 hours before ketamine initiation was -4 (-3 to -5, [0 to -5]) and after ketamine was -4 (-3 to -4 [-1 to -5]) ( P = 0.614). Ketamine infusion can be used as an adjunctive sedative agent in patients receiving ECMO and may decrease concurrent sedative and/or opioid infusions without altering RASS scores. The hemodynamic effects of ketamine may provide the benefit of decreasing vasopressor requirements.
Project description:ObjectiveTo compare spontaneous preterm birth (SPTB) and iatrogenic preterm birth (IPTB) rates during both waves of the coronavirus disease 2019 (COVID-19) pandemic.MethodsRetrospective analysis of the PregCovid registry of pregnant women with COVID-19 was performed at a dedicated COVID-19 hospital in Mumbai, India. The data of 1630 women were analyzed for this study between April 4, 2020 and July 4, 2021. Prepandemic data were analyzed and compared with pandemic data. Main outcome measure was spontaneous preterm birth rate.ResultsPreterm deliveries were higher during the second wave (46/329; 14%) compared with the first wave (82/807; 10.2%) of the COVID-19 pandemic (P = 0.065). Higher SPTBs were reported during the second wave than the first wave (12.5% versus 8.3%) (P = 0.03) as well as the prepandemic period (12.5% versus 10.5%) (P = 0.286). IPTBs were significantly lower in the pandemic period than in the prepandemic period (1.8 versus 3.3) (P = 0.012).ConclusionIn Mumbai, India, we found an unusual change in SPTBs during the 6 months of the second wave of COVID-19 compared with the previous 10 months of the first wave of pandemic and 1 year of prepandemic.