Project description:Here, the hydrothermal synthesis (HTS) of 2,3-diarylquinoxalines from 1,2-diketones and o-phenylendiamines (o-PDAs) was achieved. The synthesis is simple, fast, and generates high yields, without requiring any organic solvents, strong acids or toxic catalysts. Reaction times down to <10 min without decrease in yield could be achieved through adding acetic acid as promoter, even for highly apolar biquinoxalines (yield >90 % in all cases). Moreover, it was shown that HTS has high compatibility: (i) hydrochlorides, a standard commercial form of amines, could be used directly as combined amine source and acidic catalyst, and (ii) Boc-diprotected o-PDA could be directly employed as substrate that underwent HT deprotection. A systematic large-scale computational comparison of all reported syntheses of the presented quinoxalines from the same starting compounds showed that this method is more environmentally friendly and less toxic than all existing methods and revealed generic synthetic routes for improving reaction yields. Finally, the application of the synthesized compounds as fluorescent dyes for cell staining was explored.
Project description:The preparation of gold nanoparticles (AuNPs) involves a variety of chemical and physical methods. These methods use toxic and environmentally harmful chemicals. Consequently, the synthesis of AuNPs using green chemistry has been under investigation to develop eco-friendly nanoparticles. One approach to achieve this is the use of plant-derived phytochemicals that are capable of reducing gold ions to produce AuNPs. The aim of this study was to implement a facile microtitre-plate method to screen a large number of aqueous plant extracts to determine the optimum concentration (OC) for the bio-synthesis of the AuNPs. Several AuNPs of different sizes and shapes were successfully synthesized and characterized from 17 South African plants. The characterization was done using Ultra Violet-Visible Spectroscopy, Dynamic Light Scattering, High Resolution Transmission Electron Microscopy and Energy-Dispersive X-ray Spectroscopy. We also studied the effects of temperature on the synthesis of the AuNPs and showed that changes in temperatures affect the size and dispersity of the generated AuNPs. We also evaluated the stability of the synthesized AuNPs and showed that some of them are stable in biological buffer solutions.
Project description:We propose a novel technique for the large-scale synthesis of aligned-plate nanostructures that are self-assembled and self-supporting. The synthesis technique involves developing nanoscale two-phase microstructures through discontinuous precipitation followed by selective etching to remove one of the phases. The method may be applied to any alloy system in which the discontinuous precipitation transformation goes to completion. The resulting structure may have many applications in catalysis, filtering and thermal management depending on the phase selection and added functionality through chemical reaction with the retained phase. The synthesis technique is demonstrated using the discontinuous precipitation of a ?' phase, (Ni, Co)3Al, followed by selective dissolution of the ? matrix phase. The production of the nanostructure requires heat treatments on the order of minutes and can be performed on a large scale making this synthesis technique of great economic potential.
Project description:In the last decade, more than 22 million ha of land have been contracted to large-scale land acquisitions in Africa, leading to increased pressures, competition, and conflicts over freshwater resources. Currently, 3% of contracted land is in production, for which we model site-specific water demands to indicate where freshwater appropriation might pose high socioenvironmental challenges. We use the dynamic global vegetation model Lund-Potsdam-Jena managed Land to simulate green (precipitation stored in soils and consumed by plants through evapotranspiration) and blue (extracted from rivers, lakes, aquifers, and dams) water demand and crop yields for seven irrigation scenarios, and compare these data with two baseline scenarios of staple crops representing previous water demand. We find that most land acquisitions are planted with crops that demand large volumes of water (>9,000 m3?ha-1) like sugarcane, jatropha, and eucalyptus, and that staple crops have lower water requirements (<7,000 m3?ha-1). Blue water demand varies with irrigation system, crop choice, and climate. Even if the most efficient irrigation systems were implemented, 18% of the land acquisitions, totaling 91,000 ha, would still require more than 50% of water from blue water sources. These hotspots indicate areas at risk for transgressing regional constraints for freshwater use as a result of overconsumption of blue water, where socioenvironmental systems might face increased conflicts and tensions over water resources.
Project description:Porphyrin synthesis under solvent-free conditions represents the "greening" of a traditional synthesis that normally requires large amounts of organic solvent, and has hindered the industrial-scale synthesis of this useful class of molecules. We have found that the four-fold acid-catalysed condensation of aldehyde and pyrrole to yield a tetra-substituted porphyrin is possible through mechanochemical techniques, without a solvent present. This represents one of the still-rare examples of carbon-carbon bond formation by mechanochemistry. Specifically, upon grinding equimolar amounts of pyrrole and benzaldehyde in the presence of an acid catalyst, cyclization takes place to give reduced porphyrin precursors (reversible), which upon oxidation form tetraphenylporphyrin (TPP). The approach has been found to be suitable for the synthesis of a variety of meso-tetrasubstituted porphyrins. Oxidation can occur either by using an oxidizing agent in solution, to give yields comparable to those published for traditional methods of porphyrin synthesis, or through mechanochemical means resulting in a two-step mechanochemical synthesis to give slightly lower yields that are still being optimized. We are also working on "green" methods of porphyrin isolation, including entrainment sublimation, which would hopefully further reduce the need for large amounts of organic solvent. These results hold promise for the development of mechanochemical synthetic protocols for porphyrins and related classes of compounds.
Project description:It has long been a major challenge to achieve synthetic control over size and monodispersity of gold thiolate nanoclusters. Among the reported Aun thiolate clusters, Au38 has been shown to be particularly stable but was only obtained as a minor product in previous syntheses. In this work, we report a bulk solution synthetic method that permits large-scale, facile synthesis of truly monodisperse Au38 nanoclusters. This new method explores a two-phase ligand exchange process utilizing glutathione-capped Aun clusters as the starting material. The ligand exchange process with neat dodecanethiols causes gold core etching and secondary growth of clusters, and eventually leads to monodisperse Au38 clusters in high purity, which eliminates nontrivial postsynthetic separation steps. This method can be readily scaled up to synthesize Au38(SC12H25)24 in large quantities and thus makes the approach and Au38 nanoclusters of broad utility.
Project description:The rapid growth of the literature on neuroimaging in humans has led to major advances in our understanding of human brain function but has also made it increasingly difficult to aggregate and synthesize neuroimaging findings. Here we describe and validate an automated brain-mapping framework that uses text-mining, meta-analysis and machine-learning techniques to generate a large database of mappings between neural and cognitive states. We show that our approach can be used to automatically conduct large-scale, high-quality neuroimaging meta-analyses, address long-standing inferential problems in the neuroimaging literature and support accurate 'decoding' of broad cognitive states from brain activity in both entire studies and individual human subjects. Collectively, our results have validated a powerful and generative framework for synthesizing human neuroimaging data on an unprecedented scale.
Project description:The unique properties of graphene are highly desired for printing electronics, coatings, energy storage, separation membranes, biomedicine, and composites. However, the high efficiency exfoliation of graphene into single- or few-layered nanoplates remains a grand challenge and becomes the bottleneck in essential studies and applications of graphene. Here, we report a scalable and green method to exfoliate graphene nanoplatelets (GNPs) from nature graphite in pure water without using any chemicals or surfactants. The essence of this strategy lies in the facile liquid exfoliation route with the assistance of vapor pretreatment for the preparation of edge hydroxylated graphene. The produced graphene consisted primarily of fewer than ten atomic layers. Such the water soluble graphene can be stored in the form of dispersion (~0.55?g L-1) or filter cake for more than 6 months without the risk of re-stacking. This method paves the way for the environmentally friendly and cost-effective production of graphene-based materials.
Project description:One of the major sources of uncertainty in climate prediction results from the limitations in representing shallow cumulus (Cu) in models. Recently, a class of continental shallow convective Cu was shown to share distinct morphological properties and to emerge globally mostly over forests and vegetated areas, thus named greenCu. Using machine-learning supervised classification, we identify greenCu fields over three regions, from the tropics to mid- and higher-latitudes, and establish a novel satellite-based data set called greenCuDb, consisting of 1° × 1° sized, high-resolution MODIS images. Using greenCuDb in conjunction with ERA5 reanalysis data, we create greenCu composites for different regions and reveal that greenCu are driven by similar large-scale meteorological conditions, regardless of their geographical locations throughout the world's continents. These conditions include distinct profiles of temperature, humidity and large-scale vertical velocity. The boundary layer is anomalously warm and moderately humid, and is accompanied by a strong large-scale subsidence in the free troposphere.
Project description:Gold nanorods (GNRs) exhibit a tunable longitudinal surface plasmon resonance (LSPR) that depends on the GNR aspect ratio (AR). Independently controlling the AR and size of GNRs remains challenging but is important because the scattering intensity strongly depends on the GNR size. Here, we report a secondary (seeded) growth procedure, wherein continuous addition of ascorbic acid (AA) to a stirring solution of GNRs, stabilized by cetyltrimethylammonium bromide (CTAB) and synthesized by a common GNR growth procedure, deposits the remaining (~70%) of the Au precursor onto the GNRs. The growth phase of GNR synthesis is often performed without stirring, since stirring has been believed to reduce the yield of rod-shaped nanoparticles, but we report that stirring coupled with continuous addition of AA during secondary growth allows improved control over the AR and size of GNRs. After a common primary GNR growth procedure, the LSPR of GNRs is ~820 nm, which can be tuned between ~700-880 nm during secondary growth by adjusting the rate of AA addition or adding benzyldimethylhexadecylammonium chloride hydrate (BDAC). This approach for secondary growth can also be used with primary GNRs of different ARs to achieve different LSPRs and can likely be extended to nanoparticles of different shapes and other metals.