Unknown

Dataset Information

0

Caenorhabditis elegans exhibits positive gravitaxis.


ABSTRACT:

Background

Gravity plays an important role in most life forms on Earth. Yet, a complete molecular understanding of sensing and responding to gravity is lacking. While there are anatomical differences among animals, there is a remarkable conservation across phylogeny at the molecular level. Caenorhabditis elegans is suitable for gene discovery approaches that may help identify molecular mechanisms of gravity sensing. It is unknown whether C. elegans can sense the direction of gravity.

Results

In aqueous solutions, motile C. elegans nematodes align their swimming direction with the gravity vector direction while immobile worms do not. The worms orient downward regardless of whether they are suspended in a solution less dense (downward sedimentation) or denser (upward sedimentation) than themselves. Gravitaxis is minimally affected by the animals' gait but requires sensory cilia and dopamine neurotransmission, as well as motility; it does not require genes that function in the body touch response.

Conclusions

Gravitaxis is not mediated by passive forces such as non-uniform mass distribution or hydrodynamic effects. Rather, it is mediated by active neural processes that involve sensory cilia and dopamine. C. elegans provides a genetically tractable system to study molecular and neural mechanisms of gravity sensing.

SUBMITTER: Chen WL 

PROVIDER: S-EPMC8439010 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8762297 | biostudies-literature
| S-EPMC11017466 | biostudies-literature
| S-EPMC3689805 | biostudies-other
| S-EPMC6325697 | biostudies-literature
| S-EPMC4406715 | biostudies-literature
| S-EPMC5734614 | biostudies-literature
| S-EPMC6485396 | biostudies-literature
| S-EPMC2814247 | biostudies-literature
| S-EPMC3247157 | biostudies-literature
| S-EPMC6063732 | biostudies-literature