Site-specific acylation of a bacterial virulence regulator attenuates infection.
Ontology highlight
ABSTRACT: Microbiota generates millimolar concentrations of short-chain fatty acids (SCFAs) that can modulate host metabolism, immunity and susceptibility to infection. Butyrate in particular can function as a carbon source and anti-inflammatory metabolite, but the mechanism by which it inhibits pathogen virulence has been elusive. Using chemical proteomics, we found that several virulence factors encoded by Salmonella pathogenicity island-1 (SPI-1) are acylated by SCFAs. Notably, a transcriptional regulator of SPI-1, HilA, was acylated on several key lysine residues. Subsequent incorporation of stable butyryl-lysine analogs using CRISPR-Cas9 gene editing and unnatural amino acid mutagenesis revealed that site-specific modification of HilA impacts its genomic occupancy, expression of SPI-1 genes and attenuates Salmonella enterica serovar Typhimurium invasion of epithelial cells, as well as dissemination in vivo. Moreover, a multiple-site HilA lysine acylation mutant strain of S. Typhimurium was resistant to butyrate inhibition ex vivo and microbiota attenuation in vivo. Our results suggest that prominent microbiota-derived metabolites may directly acylate virulence factors to inhibit microbial pathogenesis in vivo.
SUBMITTER: Zhang ZJ
PROVIDER: S-EPMC8439376 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA