Project description:The last decade has witnessed revolutionary advances taken in immunotherapy for various malignant tumors. However, immune-related molecules and their characteristics in the prediction of clinical outcomes and immunotherapy response in clear cell renal cell carcinoma (ccRCC) remain largely unclear. C-C Motif Chemokine Ligand 4 (CCL4) was extracted from the intersection analysis of common differentially expressed genes (DEGs) of four microarray datasets from the Gene Expression Omnibus database and immune-related gene lists in the ImmPort database using Cytoscape plug-ins and univariate Cox regression analysis. Subsequential analysis revealed that CCL4 was highly expressed in ccRCC patients, and positively correlated with multiple clinicopathological characteristics, such as grade, stage and metastasis, while negatively with overall survival (OS). We performed gene set enrichment analysis (GSEA) and gene set variant analysis (GSVA) with gene sets coexpressed with CCL4, and observed that gene sets positively related to CCL4 were enriched in tumor proliferation and immune-related pathways while metabolic activities in the negatively one. To further explore the correlation between CCL4 and immune-related biological process, the CIBERSORT algorithm, ESTIMATE method, and tumor mutational burden (TMB) score were employed to evaluate the tumor microenvironment (TME) characteristics of each sample and confirmed that high CCL4 expression might give rise to high immune cell infiltration. Moreover, correlation analysis revealed that CCL4 was positively correlated with common immune checkpoint genes, such as programmed cell death protein 1 (PD-1), cytotoxic T-lymphocyte-associated protein 4 (CTLA4), and lymphocyte activating 3 (LAG3). Overall, this study demonstrated that CCL4 might serve as a potential immune-related prognostic biomarker to predict clinical outcomes and immunotherapy response in ccRCC. Moreover, CCL4 might contribute to TME modulation, indicating the mechanism CCL4 involved in tumor proliferation and metastasis, which could provide novel therapeutic perceptions for ccRCC patients.
Project description:Background:Aurora kinase B (AURKB) is an important carcinogenic factor in various tumors, while its role in clear cell renal cell carcinoma (ccRCC) still remains unclear. This study aimed to investigate its prognostic value and mechanism of action in ccRCC. Methods:Gene expression profiles and clinical data of ccRCC patients were downloaded from The Cancer Genome Atlas database. R software was utilized to analyze the expression and prognostic role of AURKB in ccRCC. Gene set enrichment analysis (GSEA) was used to analyze AURKB related signaling pathways in ccRCC. Results:AURKB was expressed at higher levels in ccRCC tissues than normal kidney tissues. Increased AURKB expression in ccRCC correlated with high histological grade, pathological stage, T stage, N stage and distant metastasis (M stage). Kaplan-Meier survival analysis suggested that high AURKB expression patients had a worse prognosis than patients with low AURKB expression levels. Multivariate Cox analysis showed that AURKB expression is a prognostic factor of ccRCC. GSEA indicated that genes involved in autoimmune thyroid disease, intestinal immune network for IgA production, antigen processing and presentation, cytokine-cytokine receptor interaction, asthma, etc., were differentially enriched in the AURKB high expression phenotype. Conclusions:AURKB is a promising biomarker for predicting prognosis of ccRCC patients and a potential therapeutic target. In addition, AURKB might regulate progression of ccRCC through modulating intestinal immune network for IgA production and cytokine-cytokine receptor interaction, etc. signaling pathways. However, more research is necessary to validate the findings.
Project description:ObjectiveTo study the expression of adipophilin (PLIN2), a lipid storage-associated cell protein, in different subtypes of renal cell cancer and to elucidate its prognostic value.Materials and methodsTwo-hundred-seventy-five patients with renal cell carcinoma (RCC) were included in this study. Immunohistochemistry with a polyclonal antibody to adipophilin was used on the tissue microarray (formalin-fixed, paraffin-embedded tissue) for detection of adipophilin. Median follow-up time was 91 (range 1-159) months in the whole cohort and 100 (1-159) months for patients with clear-cell RCC. Additional validation for adipophilin was performed using publicly available gene expression data for clear cell RCC from The Cancer Genome Atlas (TCGA).ResultsAdipophilin expression was detected in 14.3% of papillary RCC, in 0% of chromophobe RCC and in 58.7% of clear-cell RCC in the cytoplasm or at the membrane. Only membrane expression was correlated with other clinical parameters (pT-stage, pN-stage, R-status, sex) and showed a prognostic significance in univariate analysis with regard to overall survival of patients with clear cell subtype (HR 2.90, 95% CI 1.55-5.42, p=0.001), which failed significance on multivariate analysis. mRNA expression of PLIN2 on TCGA data using best selected cut-off was prognostically significant in both univariate (HR 1.76, 95% CI 1.28-2.42, p = 0.0005) and multivariate analyses (HR 1.46, 95% CI 1.05-2.04, p = 0.0257).ConclusionsAdipophilin is a novel and still understudied prognostic biomarker in clear cell renal cell carcinoma which deserves further study.
Project description:Clear cell renal cell carcinoma (ccRCC) is one of the most common malignancies and lacks reliable biomarkers for diagnosis and prognosis, which results in high incidence and mortality rates of ccRCC. In this study, ISG20, HJURP, and FOXM1 were identified as hub genes via weighted gene co-expression network analysis (WGCNA) and Cox regression analysis. Samples validation showed that only ISG20 was up-regulated in ccRCC. Therefore, ISG20 was selected for further study. High ISG20 expression was associated with poor overall survival and disease-free survival. Furthermore, the expression of ISG20 could effectively differentiate ccRCC from normal tissues and was positively correlated to clinical stages. Functional experiments proved that knockdown of ISG20 expression could obviously inhibit cell growth, migration, and invasion in ccRCC cells. To find the potential mechanisms of ISG20, gene set enrichment analysis (GSEA) was performed and revealed that high expression of ISG20 was significantly involved in metastasis and cell cycle pathways. In addition, we found that ISG20 could regulate the expression of MMP9 and CCND1. In conclusion, these findings suggested that ISG20 promoted cell proliferation and metastasis via regulating MMP9/CCND1 expression and might serve as a potential biomarker and therapeutic target in ccRCC.
Project description:About 3% of adult cancers are caused by renal cell carcinoma (RCC) and its pathogenesis remains elusive. Among RCC, clear cell renal cell carcinoma (ccRCC) is the predominant histological subtype. Resistance to conventional treatments leaves few treatment options for advanced ccRCC. Although the transcriptome profile of primary ccRCC has been comprehensively summarized, the transcriptome profile of metastatic ccRCC is still lacking. In this study we identified a list of metastasis-related genes and constructing a metastasis-associated prognostic gene signature. By analyzing data from GSE85258 and GSE105288 datasets, 74 genes were identified as metastasis-related genes. To construct prognostic features, we downloaded the expression data of ccRCC from the Cancer Genome Atlas (TCGA). Metastasis-associated genes were initially selected through the LASSO Cox regression analysis and 12 metastasis-related were included to construct prognostic model. Transcriptome profile, patient prognosis, and immune cell infiltration characteristics differed between low- and high-risk groups after grouping according to median risk score. Through explored the functions of differentially expressed genes (DEGs) between the two groups. Kinesin family member 23 (KIF23) was identified as a prognostic marker in ccRCC patients. Furthermore, inhibition of KIF23 expression reduced the proliferation, migration and invasion of ccRCC cells. We further demonstrated that KIF23 promote nuclear translocation of β-catenin in ccRCC cells, which provides novel insight into the functions and molecular machinery of KIF23 in ccRCC.
Project description:BackgroundClear cell renal cell carcinoma (ccRCC) is a type of life-threatening malignant tumor of the urinary system. IL20RB, interleukin 20 receptor subunit beta, is a cytokine receptor subunit coding gene and was initially found to play a vital role in human cancers, while its role in ccRCC still remains unclear.MethodsIn this work, we explored the prognostic value and therapeutic potential of IL20RB in ccRCC mainly by online tools. Firstly, we used UALCAN and GEPIA to explore the expression profile and prognostic value of IL20RB in various cancers; the expression profile in tumor cell lines was also analysed with CCLE and Expression Atlas. Then, we decided to focus on ccRCC for further analysis; we further demonstrated the significant correlation between expression and clinical features by GEPIA and UALCAN. In order to reveal the potential intrinsic mechanism responsible for the upregulation of IL20RB in ccRCC, we made genetic alternation analysis and methylation analysis. cBioPortal was used for genetic alternation analysis. UALCAN, MethSurv, and Xena were used for methylation analysis. To learn details of how IL20RB might function in ccRCC, we further conducted functional analysis and immune infiltration analysis. STRING and GSEA were used to do functional analysis. TIMER was used for immune infiltration analysis; KM plotter was used for survival analysis.ResultsResults show that IL20RB is upregulated in ccRCC, and low methylation may be responsible for its upregulation. Both high expression and low methylation of IL20RB predict worse survival, and both have a strong positive correlation with clinical characteristics. In addition, results indicate that there exists a crosstalk between IL20RB and neutrophils. Furthermore, the immune microenvironment could influence the prognosis predicting ability of IL20RB.ConclusionsIn conclusion, IL20RB plays an important role in ccRCC and is identified as a novel prognostic and potential therapeutic biomarker in ccRCC.
Project description:Invasion and metastasis are the main causes of poor prognosis in patients with clear cell renal cell carcinoma (ccRCC). The homeodomain interacting protein kinases (HIPKs) can regulate cell proliferation and apoptosis. Little is known about the prognostic role of HIPKs in ccRCC. Here we use Kaplan-Meier survival analysis and multivariate analysis to analyze the correlation of overall survival (OS) and disease-free survival (DFS). ROC curves analyzed the relationship between clinicopathological parameters and HIPK3 expression in ccRCC. Univariate analysis and multivariate analysis confirmed that the expression of HIPK3 was associated with OS (HR, 0.701; P=0.041) and DFS (HR, 0.630; P=0.012). Low HIPK3 expression was a poor prognostic factor and HIPK3 expression was significantly down-regulated in ccRCC cancer tissues when compared with normal renal tissues. In vitro cell results also confirmed that HIPK3 over-expression could inhibit tumor growth and malignant characteristics. The results indicate that low expression of HIPK3 in ccRCC tissues is significantly associated with poor survival rates in tumor patients, and HIPK3 may be used as a valuable biomarker and inhibitor of ccRCC.
Project description:Background: Up frameshift protein 1 (UPF1) is a key component of nonsense-mediated mRNA decay (NMD) of mRNA containing premature termination codons (PTCs). The dysregulation of UPF1 has been reported in various cancers. However, the expression profile of UPF1 and its clinical significance in clear cell renal cell carcinoma (ccRCC) remains unclear. Methods: In order to detect UPF1 expression in ccRCC and its relationship with the clinical features of ccRCC, bulk RNA sequencing data were analyzed from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and ArrayExpress databases. The impact of UPF1 on the immune microenvironment of ccRCC was evaluated by multiple immune scoring algorithms to identify the cell groups that typically express UPF1 using ccRCC single cell sequencing (scRNA) data. In addition, genes co-expressed with UPF1 were identified by the weighted gene correlation network analysis (WGCNA), followed by KEGG and Reactome enrichment analysis. A series of functional experiments were performed to assess the roles of UPF1 in renal cancer cells. Finally, pan-cancer analysis of UPF1 was also performed. Results: Compared with normal tissues, the expression levels of UPF1 mRNA and protein in tumor tissues of ccRCC patients decreased significantly. In addition, patients with low expression of UPF1 had a worse prognosis. Analysis of the immune microenvironment indicated that UPF1 immune cell infiltration was closely related and the ccRCC scRNA-seq data identified that UPF1 was mainly expressed in macrophages. WGCNA analysis suggested that the functions of co-expressed genes are mainly enriched in cell proliferation and cellular processes. Experimental tests showed that knockdown of UPF1 can promote the invasion, migration and proliferation of ccRCC cells. Lastly, pan-cancer analysis revealed that UPF1 disorders were closely associated with various cancer outcomes. Conclusions: UPF1 may play a tumor suppressive role in ccRCC and modulate the immune microenvironment. The loss of UPF1 can predict the prognosis of ccRCC, making it a promising biomarker and providing a new reference for prevention and treatment.
Project description:Clear cell renal cell carcinoma (ccRCC) is a common malignancy of urologic neoplasms. Hepcidin is a pivotal modulator of iron metabolism involved in human cancers; however, the biological significance of hepcidin in ccRCC remains to be fully understood. Therefore, in this study, we evaluated the expression profiles of hepcidin in ccRCC from several public databases and found that hepcidin expression was upregulated in ccRCC, which was further validated in ccRCC cell lines, clinical samples, and tissue microarray (TMA) quantitative real-time PCR and immunohistochemistry. In addition, we found that the expression level of hepcidin was correlated with the age, T stage and pathologic stage of patients. Furthermore, hepcidin promoter methylation was significantly associated with the worse poor clinical parameters of ccRCC patients, and hepcidin was an independent prognostic factor. Mechanistically, enrichment analysis revealed that hepcidin participated in the immune-related and metabolism-related pathways. Hepcidin was positively correlated with not only immune infiltration and immune checkpoints but also tumor mutation burden and cytotoxic T lymphocyte. Finally, we validated the positive correlation of hepcidin with the marker of macrophage (CD68) in the TMA. Our findings provide insights into understanding the function and its underlying mechanism of hepcidin in ccRCC and suggest that hepcidin might serve as a potential predictive biomarker of response to immunotherapy and the prognosis of patients with ccRCC.
Project description:BackgroundProgress in the diagnosis and treatment of clear cell renal cell carcinoma (ccRCC) has significantly prolonged patient survival. However, ccRCC displays an extreme heterogenous characteristic and metastatic tendency, which limit the benefit of targeted or immune therapy. Thus, identifying novel biomarkers and therapeutic targets for ccRCC is of great importance.MethodPan cancer datasets, including the expression profile, DNA methylation, copy number variation, and single nucleic variation, were introduced to decode the aberrance of copper death regulators (CDRs). Then, FDX1 was systematically analyzed in ccRCC to evaluate its impact on clinical characteristics, prognosis, biological function, immune infiltration, and therapy response. Finally, in vivo experiments were utilized to decipher FDX1 in ccRCC malignancy and its role in tumor immunity.ResultCopper death regulators were identified at the pancancer level, especially in ccRCC. FDX1 played a protective role in ccRCC, and its expression level was significantly decreased in tumor tissues, which might be regulated via CNV events. At the molecular mechanism level, FDX1 positively regulated fatty acid metabolism and oxidative phosphorylation. In addition, FDX1 overexpression restrained ccRCC cell line malignancy and enhanced tumor immunity by increasing the secretion levels of IL2 and TNFγ.ConclusionsOur research illustrated the role of FDX1 in ccRCC patients' clinical outcomes and its impact on tumor immunity, which could be treated as a promising target for ccRCC patients.