Novel cold-adapted raw-starch digesting α-amylases from Eisenia fetida: Gene cloning, expression, and characterization.
Ontology highlight
ABSTRACT: We identified the raw-starch-digesting α-amylase genes a earthworm Eisenia fetid α amylase I and II (Ef-Amy I and Ef-Amy II). Each gene consists of 1,530 base pairs (bp) that encode proteins of 510 amino acids, as indicated by the corresponding mRNA sequences. Ef-Amy I and II showed an 89% amino acid identity. The amino acid sequences of Ef-Amy I and II were similar to those of the α-amylases from porcine pancreas, human pancreas, Tenebrio molitor, Oryctolagus cuniculus, and Xenopus (Silurana) tropicalis. Each gene encoding mature Ef-Amy I and II was expressed in the GS115 strain of Pichia pastoris. The molecular masses of the recombinant Ef-Amy I and II were 57 kDa each, and catalytically important residues of α-amylases of the GH family 13 were conserved in both proteins. These amylases exhibited raw-starch-digesting activity at 4 °C. The substrate specificities of rEf-Amy I and II were dissimilar. rEf-Amy I and II were shown to be active even in 40% ethanol, 4 M NaCl, and 4 M KCl.
SUBMITTER: Tsukamoto K
PROVIDER: S-EPMC8446577 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA