Redox-Switchable Cycloisomerization of Alkynoic Acids with Napthalenediimide-Derived N-Heterocyclic Carbene Complexes.
Ontology highlight
ABSTRACT: Two naphthalene-diimide (NDI) bis-imidazolium salts have been used as N-heterocyclic carbene (NHC) precursors for the preparation of NDI-functionalized complexes of rhodium and iridium of general formula [MCl(NDI-NHC)(COD)] (M=Rh, Ir; NDI-NHC=NDI-functionalized NHC ligand). Comparison of the IR spectra of the complexes [IrCl(NDI-NHC)(CO)2 ] and their related one- and two-electron reduced forms, reveal that each one-electron reduction produces a decrease of the average ν(CO) of 9-10 cm-1 , indicating a significant enhancement of the electron-richness of the metal. The [MCl(NDI-NHC)(COD)] complexes were tested in the catalytic cycloisomerization of alkynoic acids. The one-electron reduced forms showed greatly enhanced activities. For the cyclization of 5-hexynoic acid, the two-electron reduction of the ligand produced further enhancement of the catalytic activity, therefore showing that the catalyst can switch between three redox species with three distinct catalytic activities.
SUBMITTER: Ruiz-Zambrana C
PROVIDER: S-EPMC8457061 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA