Project description:Atherosclerosis-related cardiovascular diseases are the leading cause of mortality worldwide. Macrophages uptake modified lipoproteins and transform into foam cells, triggering an inflammatory response and thereby promoting plaque formation. Here we show that casein kinase 2-interacting protein-1 (CKIP-1) is a suppressor of foam cell formation and atherosclerosis. Ckip-1 deficiency in mice leads to increased lipoprotein uptake and foam cell formation, indicating a protective role of CKIP-1 in this process. Ablation of Ckip-1 specifically upregulates the transcription of scavenger receptor LOX-1, but not that of CD36 and SR-A. Mechanistically, CKIP-1 interacts with the proteasome activator REGγ and targets the transcriptional factor Oct-1 for degradation, thereby suppressing the transcription of LOX-1 by Oct-1. Moreover, Ckip-1-deficient mice undergo accelerated atherosclerosis, and bone marrow transplantation reveals that Ckip-1 deficiency in hematopoietic cells is sufficient to increase atherosclerotic plaque formation. Therefore, CKIP-1 plays an essential anti-atherosclerotic role through regulation of foam cell formation and cholesterol metabolism.
Project description:The ELR(+)-CXCL chemokines have been described typically as potent chemoattractants and activators of neutrophils during the acute phase of inflammation. Their role in atherosclerosis, a chronic inflammatory vascular disease, has been largely unexplored. Using a mouse model of atherosclerosis, we found that CXCL5 expression was upregulated during disease progression, both locally and systemically, but was not associated with neutrophil infiltration. Unexpectedly, inhibition of CXCL5 was not beneficial but rather induced a significant macrophage foam cell accumulation in murine atherosclerotic plaques. Additionally, we demonstrated that CXCL5 modulated macrophage activation, increased expression of the cholesterol efflux regulatory protein ABCA1, and enhanced cholesterol efflux activity in macrophages. These findings reveal a protective role for CXCL5, in the context of atherosclerosis, centered on the regulation of macrophage foam cell formation.
Project description:Macrophages are the origin of most foam cells in the early stage of atherosclerotic plaques. However, the mechanism involved in the formation of macrophage-derived foam cell formation remains unclear. Here, we revealed that the hedgehog (Hh) signaling is critical in autophagy-lysosome pathway regulation and macrophage-derived foam cell formation. Inhibition of Hh signaling by vismodegib ameliorated lipid deposition and oxidative stress level in atherosclerotic plaques in high-fat diet-fed apoE-/- mice. For mechanistic study, how the Hh signaling modulate the process of foam cell formation were accessed afterward. Unexpectedly, we found that suppression of Hh signaling in apoE-/- mice had no significant impact on circulating cholesterol levels, indicating that Hh pathway modulate the procession of atherosclerotic plaque not through a traditional lipid-lowing mechanism. Instead, vismodegib was found to accelerate autophagosomes maturation as well as cholesterol efflux in macrophage-derived foam cell and in turn improve foam cell formation, while autophagy inhibitors (LY294002 or CQ) administration significantly attenuated vismodegib-induced cholesterol efflux and reversed the effect on foam cell formation. Therefore, our result demonstrated that inhibition of the Hh signaling pathway increases cholesterol efflux and ameliorates macrophage-derived foam cell formation by promoting autophagy in vitro. Our data thus suggested a novel therapeutic target of atherosclerosis and indicated the potential of vismodegib to treat atherosclerosis.
Project description:Atherosclerosis is regarded as a chronic progressive inflammatory disease and is a basic pathophysiological process in coronary artery disease which is life threatening in clinic. The formation of foam cell plays a key role in the pathogenesis of atherosclerosis. OxLDL is a significant factor in progression of coronary artery disease. Our studies have demonstrated that USP14 promotes cancer development and mediates progression of cardiac hypertrophy and LPS-induced inflammation. However, the underlying mechanism of USP14 is unknown. In this study, we found that the inhibition of USP14 significantly suppressed the oxLDL uptake, subsequently decreased the foam cell formation. Surprisingly, USP14 has an effect on the expression of CD36 but not SR-A, ABCA1, Lox-1, ABCG1 and SR-Bl. Furthermore, USP14 stabilizes CD36 protein via cleaving the ubiquitin chain on CD36. Blocking CD36 activation using antibody-dependent blocking assay remarkably attenuated the function of USP14 on the formation of foam cell. In summary, our results suggested that the inhibition of USP14 decreases foam cell formation by down-regulating CD36-mediated lipid uptake and provides a potential therapeutic target for atherosclerosis.
Project description:Casein kinase 2-interacting protein-1 (CKIP-1) is a known regulator of cardiomyocytes and macrophage proliferation. In this study, we showed that CKIP-1 was involved in the process of megakaryocytic differentiation. During megakaryocytic differentiation of K562 cells, CKIP-1 was dramatically upregulated and this upregulation induced by PMA was mediated through downregulation of transcription factor GATA-1. By transient transfection, oligonucleotide-directed mutagenesis and chromatin immunoprecipitation assays, we identified the transcriptional regulation of CKIP-1 by GATA-1. Overexpression of CKIP-1 initiated events of spontaneous megakaryocytic differentiation in K562 cells. Conversely, knockdown of CKIP-1 in cell lines suppressed megakaryocytic differentiation. Mechanistically, overexpression of CKIP-1 changed the expression levels of transcription factors that have been shown to be critical in erythro-megakaryocytic differentiation such as Fli-1, c-Myb and c-Myc. In vivo analysis confirmed that CKIP-1-/- mice had decreased number of CD41+ cells harvested from bone marrow, and lower platelet levels when compared to wild-type littermates. This is the first direct evidence suggesting that CKIP-1 is a novel regulator of megakaryocytic differentiation.