Project description:Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved rapidly, leading to viral lineages characterized by multiple mutations in the spike protein, which could potentially confer to the virus the ability to avoid the vaccine-induced immune response, making the vaccines less effective or ineffective. Here, we initially evaluated the neutralization capabilities in vitro by serum neutralization (SN) of six serum samples collected from recipients of the BNT162b2 vaccine against 11 SARS-CoV-2 isolates belonging to the major SARS-CoV-2 lineages that had been circulating in Italy. Then, we considered 30 additional serum samples by SN assay against the dominant B.1.617.2 (Delta) variant. A B.1 lineage isolate was used as a reference. In the first analysis, significant differences when compared with the reference strain (p > 0.05) were not evidenced; instead, when the panel of 30 sera was tested against the B.1.617.2 (Delta) variant, a significant (p = 0.0015) 2.38-fold reduction in neutralizing titres compared with the reference after the first vaccine dose was demonstrated. After the second vaccine dose, the reduction was not significant (p = 0.1835). This study highlights that the BNT162b2 vaccine stimulates a humoral response able to neutralize all tested SARS-CoV-2 variants, thus suggesting a prominent role in mitigating the impact of the SARS-CoV-2 pandemic in real-world conditions. Long-term follow-up is currently ongoing.
Project description:Rapidly spreading variants of SARS-CoV-2 that have arisen in the United Kingdom and South Africa share the spike N501Y substitution, which is of particular concern because it is located in the viral receptor binding site for cell entry and increases binding to the receptor (angiotensin converting enzyme 2). We generated isogenic N501 and Y501 SARS-CoV-2. Sera of 20 participants in a previously reported trial of the mRNA-based COVID-19 vaccine BNT162b2 had equivalent neutralizing titers to the N501 and Y501 viruses.
Project description:Rapidly spreading variants of SARS-CoV-2 that have arisen in the United Kingdom and South Africa share the spike N501Y substitution, which is of particular concern because it is located in the viral receptor binding site for cell entry and increases binding to the receptor. We generated isogenic N501 and Y501 SARS-CoV-2. Twenty human sera from the mRNA-based vaccine BNT162b2 trial exhibited equivalent neutralizing titers to the N501 and Y501 viruses.
Project description:Initial COVID-19 vaccine candidates were based on the original sequence of SARS-CoV-2. However, the virus has since accumulated mutations, among which the spike D614G is dominant in circulating virus, raising questions about potential virus escape from vaccine-elicited immunity. Here, we report that the D614G mutation modestly reduced (1.7-2.4-fold) SARS-CoV-2 neutralization by BNT162b2 vaccine-elicited mouse, rhesus, and human sera, concurring with the 95% vaccine efficacy observed in clinical trial.
Project description:The globally circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant of concern Omicron (B.1.1.529) has a large number of mutations, especially in the spike protein, indicating that recognition by neutralizing antibodies may be compromised. We tested Wuhan (Wuhan-Hu-1 reference strain), Beta (B.1.351), Delta (B.1.617.2), or Omicron pseudoviruses with sera of 51 participants who received two or three doses of the messenger RNA (mRNA)-based COVID-19 vaccine BNT162b2. After two doses, Omicron-neutralizing titers were reduced >22-fold compared with Wuhan-neutralizing titers. One month after the third vaccine dose, Omicron-neutralizing titers were increased 23-fold relative to their levels after two doses and were similar to levels of Wuhan-neutralizing titers after two doses. The requirement of a third vaccine dose to effectively neutralize Omicron was confirmed with sera from a subset of participants using live SARS-CoV-2. These data suggest that three doses of the mRNA vaccine BNT162b2 may protect against Omicron-mediated COVID-19.
Project description:The BNT162b2 mRNA COVID-19 vaccine (Pfizer-BioNTech) is being utilised internationally for mass COVID-19 vaccination. Evidence of single-dose protection against symptomatic disease has encouraged some countries to opt for delayed booster doses of BNT162b2, but the effect of this strategy on rates of asymptomatic SARS-CoV-2 infection remains unknown. We previously demonstrated frequent pauci- and asymptomatic SARS-CoV-2 infection amongst healthcare workers (HCWs) during the UK's first wave of the COVID-19 pandemic, using a comprehensive PCR-based HCW screening programme (Rivett et al., 2020; Jones et al., 2020). Here, we evaluate the effect of first-dose BNT162b2 vaccination on test positivity rates and find a fourfold reduction in asymptomatic infection amongst HCWs ≥12 days post-vaccination. These data provide real-world evidence of short-term protection against asymptomatic SARS-CoV-2 infection following a single dose of BNT162b2 vaccine, suggesting that mass first-dose vaccination will reduce SARS-CoV-2 transmission, as well as the burden of COVID-19 disease.
Project description:BackgroundThe SARS-CoV-2 Omicron variant, designated as a Variant of Concern(VOC) by the World Health Organization, carries numerous spike mutations which have are known to evade neutralizing antibodies elicited by COVID-19 vaccines. A deeper understanding of the susceptibility of Omicron variant to vaccine-induced neutralizing antibodies is urgently needed for risk assessment.MethodsOmicron variant strains HKU691 and HKU344-R346K were isolated from patients using TMPRSS2-overexpressing VeroE6 cells. Whole genome sequence was determined using nanopore sequencing. Neutralization susceptibility of ancestral lineage A virus and the Omicron, Delta and Beta variants to sera from 25 BNT162b2 and 25 Coronavac vaccine recipients was determined using a live virus microneutralization assay.ResultsThe Omicron variant strain HKU344-R346K has an additional spike R346K mutation, which is present in 8.5% of strains deposited in GISAID database. Only 20% and 24% of BNT162b2 recipients had detectable neutralizing antibody against the Omicron variant HKU691 and HKU344-R346K, respectively, while none of the Coronavac recipients had detectable neutralizing antibody titer against either Omicron isolate. For BNT162b2 recipients, the geometric mean neutralization antibody titers(GMT) of the Omicron variant isolates(5.43 and 6.42) were 35.7-39.9-fold lower than that of the ancestral virus(229.4), and the GMT of both Omicron variant isolates were significantly lower than those of the Beta and Delta variants. There was no significant difference in the GMT between HKU691 and HKU344-R346K.ConclusionsOmicron variant escapes neutralizing antibodies elicited by BNT162b2 or Coronavac. The additional R346K mutation did not affect the neutralization susceptibility. Our data suggest that the Omicron variant may be associated with lower COVID-19 vaccine effectiveness.
Project description:BackgroundThe emergence of the new SARS-CoV-2 Omicron variant, which is known to have a large number of mutations when compared to other variants, brought to light the concern about vaccine escape, especially from the neutralization by antibodies induced by vaccination.MethodsBased on viral microneutralization assays, we evaluated in 90 individuals the impact on antibody neutralization induction, against Omicron variant, by a booster dose of BNT162b2 mRNA vaccine after the CoronaVac primary vaccination scheme.ResultsHere we show that the percentage of seroconverted individuals 30 and 60 days after CoronaVac scheme was 16.6% and 10%, respectively. After booster dose administration, the seroconvertion rate increased to 76.6%. The neutralization mean titer against Omicron in the CoronaVac protocol decreased over time, but after the booster dose, the mean titer increased 43.1 times.ConclusionsThese results indicate a positive impact of this vaccine combination in the serological immune response against SARS-CoV-2 Omicron variant.
Project description:The use of COVID-19 vaccines will play the major role in helping to end the pandemic that has killed millions worldwide. COVID-19 vaccines have resulted in robust humoral responses and protective efficacy in human trials, but efficacy trials excluded individuals with a prior diagnosis of COVID-19. As a result, little is known about how immune responses induced by mRNA vaccines differ in individuals who recovered from COVID-19. Here, we evaluated longitudinal immune responses to two-dose BNT162b2 mRNA vaccination in 15 adults who recovered from COVID-19, compared to 21 adults who did not have prior COVID-19 diagnosis. Consistent with prior studies of mRNA vaccines, we observed robust cytotoxic CD8+ T cell responses in both cohorts following the second dose. Furthermore, SARS-CoV-2-naive individuals had progressive increases in humoral and antigen-specific antibody-secreting cell (ASC) responses following each dose of vaccine, whereas SARS-CoV-2-experienced individuals demonstrated strong humoral and antigen-specific ASC responses to the first dose but muted responses to the second dose of the vaccine at the time points studied. Together, these data highlight the relevance of immunological history for understanding vaccine immune responses and may have significant implications for personalizing mRNA vaccination regimens used to prevent COVID-19, including booster shots.