Unknown

Dataset Information

0

Physical and Chemical Activation of Graphene-Derived Porous Nanomaterials for Post-Combustion Carbon Dioxide Capture.


ABSTRACT: Activation is commonly used to improve the surface and porosity of different kinds of carbon nanomaterials: activated carbon, carbon nanotubes, graphene, and carbon black. In this study, both physical and chemical activations are applied to graphene oxide by using CO2 and KOH-based approaches, respectively. The structural and the chemical properties of the prepared activated graphene are deeply characterized by means of scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectrometry and nitrogen adsorption. Temperature activation is shown to be a key parameter leading to enhanced CO2 adsorption capacity of the graphene oxide-based materials. The specific surface area is increased from 219.3 m2 g-1 for starting graphene oxide to 762.5 and 1060.5 m2 g-1 after physical and chemical activation, respectively. The performance of CO2 adsorption is gradually enhanced with the activation temperature for both approaches: for the best performances of a factor of 6.5 and 9 for physical and chemical activation, respectively. The measured CO2 capacities are of 27.2 mg g-1 and 38.9 mg g-1 for the physically and chemically activated graphene, respectively, at 25 °C and 1 bar.

SUBMITTER: Firdaus RM 

PROVIDER: S-EPMC8466215 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC4754909 | biostudies-other
| S-EPMC8037370 | biostudies-literature
| S-EPMC6761133 | biostudies-literature
| S-EPMC6434056 | biostudies-literature
| S-EPMC8796650 | biostudies-literature
| S-EPMC8155330 | biostudies-literature
| S-EPMC7795872 | biostudies-literature
| S-EPMC5820286 | biostudies-literature
| S-EPMC3890842 | biostudies-literature
| S-EPMC5457225 | biostudies-other