Unknown

Dataset Information

0

A Deep Learning System for Recognizing and Recovering Contaminated Slider Serial Numbers in Hard Disk Manufacturing Processes.


ABSTRACT: This paper outlines a system for detecting printing errors and misidentifications on hard disk drive sliders, which may contribute to shipping tracking problems and incorrect product delivery to end users. A deep-learning-based technique is proposed for determining the printed identity of a slider serial number from images captured by a digital camera. Our approach starts with image preprocessing methods that deal with differences in lighting and printing positions and then progresses to deep learning character detection based on the You-Only-Look-Once (YOLO) v4 algorithm and finally character classification. For character classification, four convolutional neural networks (CNN) were compared for accuracy and effectiveness: DarkNet-19, EfficientNet-B0, ResNet-50, and DenseNet-201. Experimenting on almost 15,000 photographs yielded accuracy greater than 99% on four CNN networks, proving the feasibility of the proposed technique. The EfficientNet-B0 network outperformed highly qualified human readers with the best recovery rate (98.4%) and fastest inference time (256.91 ms).

SUBMITTER: Chousangsuntorn C 

PROVIDER: S-EPMC8472306 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC4284597 | biostudies-literature
| S-EPMC7812760 | biostudies-literature
| S-EPMC5829243 | biostudies-other
| S-EPMC5384661 | biostudies-literature
| S-EPMC6906790 | biostudies-literature
| S-EPMC10087400 | biostudies-literature
| S-EPMC4784929 | biostudies-literature
| S-EPMC6544194 | biostudies-literature
| S-EPMC6970133 | biostudies-literature
| S-EPMC4034674 | biostudies-literature