Project description:Direct-acting antivirals (DAAs) are predicted to transform hepatitis C therapy, yet little is known about the prevalence of naturally occurring resistance mutations in recently acquired HCV. This study aimed to determine the prevalence and frequency of drug resistance mutations in the viral quasispecies among HIV-positive and -negative individuals with recent HCV.The NS3 protease, NS5A and NS5B polymerase genes were amplified from 50 genotype 1a participants of the Australian Trial in Acute Hepatitis C. Amino acid variations at sites known to be associated with possible drug resistance were analysed by ultra-deep pyrosequencing.A total of 12% of individuals harboured dominant resistance mutations, while 36% demonstrated non-dominant resistant variants below that detectable by bulk sequencing (that is, <20%) but above a threshold of 1%. Resistance variants (<1%) were observed at most sites associated with DAA resistance from all classes, with the exception of sofosbuvir.Dominant resistant mutations were uncommonly observed in the setting of recent HCV. However, low-level mutations to all DAA classes were observed by deep sequencing at the majority of sites and in most individuals. The significance of these variants and impact on future treatment options remains to be determined. Clinicaltrials.gov NCT00192569.
Project description:Immunomodulatory drugs (IMiDs), including thalidomide derivatives such as lenalidomide and pomalidomide, offer therapeutic benefit in several hematopoietic malignancies and autoimmune/inflammatory diseases. However, it is difficult to study the IMiD mechanism of action in murine disease models because murine cereblon (CRBN), the substrate receptor for IMiD action, is resistant to some of IMiDs therapeutic effects. To overcome this difficulty, we generated humanized cereblon (CRBNI391V) mice thereby providing an animal model to unravel complex mechanisms of action in a murine physiological setup. In our current study, we investigated the degradative effect toward IKZF1 and CK-1α, a target substrate of IMiDs. Unlike WT mice which were resistant to lenalidomide and pomalidomide, T lymphocytes from CRBNI391V mice responded with a higher degree of IKZF1 and CK-1α protein degradation. Furthermore, IMiDs resulted in an increase in IL-2 among CRBNI391V mice but not in the WT group. We have also tested a thalidomide derivative, FPFT-2216, which showed an inhibitory effect toward IKZF1 protein level. As opposed to pomalidomide, FPFT-2216 and lenalidomide degrades CK-1α. Additionally, we assessed the potential therapeutic effects of IMiDs in dextran sodium sulfate (DSS)-induced colitis. In both WT and humanized mice, lenalidomide showed a significant therapeutic effect in the DSS model of colitis, while the effect of pomalidomide was less pronounced. Thus, while IMiDs' degradative effect on IKZF1 and CK-1α, and up-regulation of IL-2, is dependent on CRBN, the therapeutic benefit of IMiDs in a mouse model of inflammatory bowel disease occurs through a CRBN-IMiD binding region independent pathway.
Project description:Targeted protein degradation represents a rapidly growing area in drug discovery and development. Moreover, small molecules that induce the targeted degradation of a given protein also represent an important addition to the chemical probes toolbox as these compounds can achieve selective protein knockdown, thus providing an approach that is orthogonal to genetic knockdowns. In order to develop degradation-inducing chemical probes for studying cereblon (CRBN) biology, we generated six CRBN-CRBN (homo-PROTAC) degraders and six CRBN-VHL (hetero-PROTAC) degraders. From these compounds we identified two potent and selective CRBN degraders (ZXH-4-130 and ZXH-4-137), both of which are CRBN-VHL compounds. We characterized these lead degraders by quantitative proteomics in five cell lines (MM1.S, Kelly, SK-N-DZ, HEK293T, and MOLT-4) and observed high selectivity for CRBN in all cell lines. Furthermore, we directly compared our compounds to current lead CRBN degraders and demonstrated how these probes can be used as chemical knockdown reagents for studying CRBN-dependent processes. Overall, our work provides a roadmap for thorough degrader characterization by combination western and proteomic analysis, as illustrated by the identification of ZXH-4-130 and ZXH-4-137 as CRBN-knockdown tool compounds suitable for cell-based studies.
Project description:BackgroundThalidomide and its analogs, lenalidomide and pomalidomide (referred to as immunomodulatory imide drugs or IMiDs) have been known to treat multiple myeloma and other hematologic malignancies as well as to cause teratogenicity. Recently the protein cereblon was identified as the primary target of IMiDs, and crystallographic studies of the cereblon-IMiDs complex showed strong enantioselective binding for the (S)-enantiomer of IMiDs.ResultsUsing the structures of cereblon and IMiDs [both (S)-enantiomers and (R)-enantiomers] we performed docking simulations in order to replicate this enantiomeric selectivity and to identify the region(s) contributing to this selectivity. We confirmed the enantioselective binding of IMiDs to cereblon with high accuracy, and propose that the hairpin connecting the β10-β11 region of cereblon (residues 351-355) contributes to this selectivity and to the increased affinity with IMiDs.ConclusionsOur docking results provide novel insights into the binding mode of IMiD-like molecules and contribute to a deeper understanding of cereblon-related biology.
Project description:Immunomodulatory drugs (IMiDs) lenalidomide and pomalidomide show remarkable antitumor activity in multiple myeloma (MM) via directly inhibiting MM-cell growth in the bone marrow (BM) microenvironment and promoting immune effector cell function. They are known to bind to the ubiquitin 3 ligase CRBN complex and thereby triggering degradation of IKZF1/3. In this study, we demonstrate that IMiDs also directly bind and activate zeta-chain-associated protein kinase-70 (Zap-70) via its tyrosine residue phosphorylation in T cells. IMiDs also triggered phosphorylation of Zap-70 in natural killer (NK) cells. Importantly, increased granzyme-B (GZM-B) expression and NK-cell activity triggered by IMiDs is associated with Zap-70 activation and inhibited by Zap-70 knockdown (KD), independent of CRBN. We also demonstrate a second mechanism whereby IMiDs trigger GZM-B and NK cytotoxicity which is CRBN and IKZF3 mediated, and inhibited or enhanced by KD of CRBN or IKZF3, respectively, independent of Zap-70. Our studies therefore show that IMiDs can enhance NK and T-cell cytotoxicity in (1) ZAP-70-mediated CRBN independent, as well as (2) CRBN-mediated ZAP-70 independent mechanisms; and provide the framework for developing novel therapeutics to activate Zap-70 and thereby enhance T and NK anti-MM cytotoxicity.
Project description:In this study, targeted sequencing to screen 50 multidrug refractory multiple myeloma (rMM) patients was performed by using the Multiple Myeloma Mutation Panel. Patients were pretreated with both immunomodulatory drugs (IMiDs) and proteasome inhibitors (PIs), and 88%, 78%, and 68% were refractory to an IMiD, a PI, or both, respectively. The majority of patients had progressive (82%) or refractory (78%) disease immediately before sampling, with 43% being IMiD refractory and 46% being PI refractory in the most recent line of therapy. Compared with newly diagnosed MM, an increased prevalence of mutations in the Ras pathway genes KRAS, NRAS, and/or BRAF (72%), as well as TP53 (26%), CRBN (12%), and CRBN pathway genes (10%) was observed. Longitudinal analyses performed in 3 patients with CRBN mutations at time of IMiD resistance confirmed that these mutations were undetectable at earlier, IMiD-sensitive time points. Furthermore, the functional introduction of these mutations in MM cells conferred lenalidomide resistance in vitro. These data indicate a differential genetic landscape in rMM associated with drug response.
Project description:Immunomodulatory drugs (IMiDs) are effective in the treatment of multiple myeloma (MM), myelodysplastic syndrome with deletion of chromosome 5q and other haematological malignancies. Recent studies showed that IMiDs bind to cereblon (CRBN), a substrate receptor of the CRL4-CRBN complex, to induce the ubiquitination and degradation of IKZF1 and IKZF3 in MM cells, contributing to their anti-myeloma activity. We aimed to determine whether the CRL4-CRBN complex proteins' expression predicts the prognosis of MM patients treated with IMiDs. Here, we evaluated the expression of CRL4-CRBN complex proteins and their downstream targets with immunohistochemistry (IHC) staining in 130 bone marrow samples from MM patients treated with thalidomide or lenalidomide-based regimens. We found that the expression of CRBN and CUL4A was associated with the superior IMiD-based treatment response (p = 0.007 and p = 0.007, respectively). Moreover, the CUL4A expression was associated with improved PFS (HR = 0.66, 95% CI 0.44-0.99; p = 0.046) and DDB1 expression showed a negative impact on OS both in the univariate (HR = 2.75, 95% CI 1.65-4.61; p = 0.001) and the multivariate (HR 3.67; 95% CI 1.79-7.49; p < 0.001) analysis. Overall, our data suggest that the expression of DDB1, CUL4A and CRBN assessed by IHC predicts the clinical course of MM patients and identifies patients with a high probability of responding to IMiD-based therapy.
Project description:Targeted protein degradation via cereblon (CRBN), a substrate receptor of an E3 ubiquitin ligase complex, is an increasingly important strategy in various clinical settings, in which the substrate specificity of CRBN is altered via the binding of small-molecule effectors. To date, such effectors are derived from thalidomide and confer a broad substrate spectrum that is far from being fully characterized. Here, we employed a rational and modular approach to design novel and minimalistic CRBN effectors. In this approach, we took advantage of the binding modes of hydrolyzed metabolites of several thalidomide-derived effectors, which we elucidated via crystallography. These yielded key insights for the optimization of the minimal core binding moiety and its linkage to a chemical moiety that imparts substrate specificity. Based on this scaffold, we present a first active de-novo CRBN effector that is able to degrade the neo-substrate IKZF3 in the cell culture.
Project description:The presence of Set2-mediated methylation of H3K36 (K36me) correlates with transcription frequency throughout the yeast genome. K36me targets the Rpd3S complex to deacetylate transcribed regions and suppress cryptic transcription initiation at certain genes. Here, using a genome-wide approach, we report that the Set2-Rpd3S pathway is generally required for controlling acetylation at coding regions. When using acetylation as a functional readout for this pathway, we discovered that longer genes and, surprisingly, genes transcribed at lower frequency exhibit a stronger dependency. Moreover, a systematic screen using high-resolution tiling microarrays allowed us to identify a group of genes that rely on Set2-Rpd3S to suppress spurious transcripts. Interestingly, most of these genes are within the group that depend on the same pathway to maintain a hypoacetylated state at coding regions. These data highlight the importance of using the functional readout of histone codes to define the roles of specific pathways.
Project description:Emergence of drug resistance to all available therapies is the major challenge to improving survival in myeloma. Cereblon (CRBN) is the essential binding protein of the widely used immunomodulatory drugs (IMiDs) and novel CRBN E3 ligase modulator drugs (CELMoDs) in myeloma, as well as certain proteolysis targeting chimeras (PROTACs), in development for a range of diseases. Using whole-genome sequencing (WGS) data from 455 patients and RNA sequencing (RNASeq) data from 655 patients, including newly diagnosed (WGS, n = 198; RNASeq, n = 437), lenalidomide (LEN)-refractory (WGS, n = 203; RNASeq, n = 176), and pomalidomide (POM)-refractory cohorts (WGS, n = 54; RNASeq, n = 42), we found incremental increases in the frequency of 3 CRBN aberrations, namely point mutations, copy losses/structural variations, and a specific variant transcript (exon 10 spliced), with progressive IMiD exposure, until almost one-third of patients had CBRN alterations by the time they were POM refractory. We found all 3 CRBN aberrations were associated with inferior outcomes to POM in those already refractory to LEN, including those with gene copy losses and structural variations, a finding not previously described. This represents the first comprehensive analysis and largest data set of CBRN alterations in myeloma patients as they progress through therapy. It will help inform patient selection for sequential therapies with CRBN-targeting drugs.