Project description:A highly gas permeable polymer with exceptional size selectivity is prepared by fusing triptycene units together via a poly-merization reaction involving Tröger's base formation. The extreme rigidity of this polymer of intrinsic microporosity (PIM-Trip-TB) facilitates gas permeability data that lie well above the benchmark 2008 Robeson upper bounds for the important O2 /N2 and H2 /N2 gas pairs.
Project description:Conjugated microporous polymers (CMPs) have conjugated skeleton and permanent porosity, and exhibit huge potential in developing novel functional materials for resolving the challenging energy and environment issues. Metal-containing CMPs often exhibited unique properties. In the present manuscript, ferrocene-based conjugated microporous polymers (FcCMPs) were designed and synthesized with 1,1'-dibromoferrocene and 5,10,15,20-Tetrakis(4- bromophenyl) porphyrin (FcCMP-1) or Tetra (p-bromophenyl) methane (FcCMP-2) as building units via Yamamoto coupling. FcCMPs were amorphous, and exhibited excellent thermal and physicochemical stability. The BET surface area of FcCMP-1 and FcCMP-2 was 638 m2/g and 422 m2/g, respectively. In comparison with FcCMP-2, FcCMP-1 displayed better gas storage capacity due to higher porosity. FcCMPs were also used as an adsorbent for removal of methyl violet from aqueous solution, and exhibited excellent adsorption properties due to the interaction between electron-rich conjugated structure of the polymers and methyl violet with cationic groups. Moreover, FcCMPs could be extracted and regenerated by an eluent and then re-used for high efficient removal of methyl violet.
Project description:Conjugated microporous polymers (CMPs) are a unique class of materials that combine extended ?-conjugation with a permanently microporous skeleton. Since their discovery in 2007, CMPs have become established as an important subclass of porous materials. A wide range of synthetic building blocks and network-forming reactions offers an enormous variety of CMPs with different properties and structures. This has allowed CMPs to be developed for gas adsorption and separations, chemical adsorption and encapsulation, heterogeneous catalysis, photoredox catalysis, light emittance, sensing, energy storage, biological applications, and solar fuels production. Here we review the progress of CMP research since its beginnings and offer an outlook for where these materials might be headed in the future. We also compare the prospect for CMPs against the growing range of conjugated crystalline covalent organic frameworks (COFs).
Project description:Interactions between ions and itinerant charges govern electronic processes ranging from the redox chemistry of molecules to the conductivity of organic semiconductors, but remain an open frontier in the study of microporous materials. These interactions may strongly influence the electronic behavior of microporous materials that confine ions and charges to length scales comparable to proton-coupled electron transfer. Yet despite mounting evidence that both solvent and electrolyte influence charge transport through ion-charge interactions in metal-organic frameworks, fundamental microscopic insights are only just beginning to emerge. Here, through electrochemical analysis of two open-framework chalcogenides TMA2FeGe4S10 and TMA2ZnGe4S10, we outline the key signatures of ion-coupled charge transport in band-type and hopping-type microporous conductors. Pressed-pellet direct-current and impedance techniques reveal that solvent enhances the conductivity of both materials, but for distinct mechanistic reasons. This analysis required the development of a fitting method that provides a novel quantitative metric of concerted ion-charge motion. Taken together, these results provide chemical parameters for a general understanding of electrochemistry in nanoconfined spaces and for designing microporous conductors and electrochemical methods used to evaluate them.
Project description:Two-dimensional (2D) nanomaterials, especially 2D organic nanomaterials with unprecedentedly diverse and controlled structure, have attracted decent scientific interest. Among the preparation strategies, the top-down approach is one of the considered low-cost and scalable strategies to obtain 2D organic nanomaterials. However, some factors of their layered counterparts limited the development and potential applications of 2D organic nanomaterials, such as type, stability, and strict synthetic conditions of layered counterparts. We report a class of layered solvent knitting hyper-cross-linked microporous polymers (SHCPs) prepared by improving Friedel-Crafts reaction and using dichloroalkane as an economical solvent, stable electrophilic reagent, and external cross-linker at low temperature, which could be used as layered counterparts to obtain previously unknown 2D SHCP nanosheets by method of ultrasonic-assisted solvent exfoliation. This efficient and low-cost strategy can produce previously unreported microporous organic polymers with layered structure and high surface area and gas storage capacity. The pore structure and surface area of these polymers can be controlled by tuning the chain length of the solvent, the molar ratio of AlCl3, and the size of monomers. Furthermore, we successfully obtain an unprecedentedly high-surface area HCP material (3002 m2 g-1), which shows decent gas storage capacity (4.82 mmol g-1 at 273 K and 1.00 bar for CO2; 12.40 mmol g-1 at 77.3 K and 1.13 bar for H2). This finding provides an opportunity for breaking the constraint of former knitting methods and opening up avenues for the design and synthesis of previously unknown layered HCP materials.
Project description:Porous organic polymers (POPs) possessing meso- and micropores can be obtained by carrying out the polymerization inside a mesoporous silica aerogel template and then removing the template after polymerization. The total pore volume (tpv) and specific surface area (ssa) can be greatly enhanced by modifying the template (up to 210% increase for tpv and 73% for ssa) as well as by supercritical processing of the POPs (up to an additional 142% increase for tpv and an additional 32% for ssa) to include larger mesopores. The broad range of pores allows for faster transport of molecules through the hierarchically porous POPs, resulting in increased diffusion rates and faster gas uptake compared to POPs with only micropores.
Project description:The host-guest complexes of conjugated microporous polymers encapsulating C60 and dye molecules have been investigated systematically. The orientation of guest molecules inside the cavities, have different terms: inside the open cavities of the polymer, or inside the cavities formed by packing different polymers. The host backbone shows responsive dynamic behavior in order to accommodate the size and shape of incoming guest molecule or guest aggregates. Simulations show that the host-guest binding of conjugated polymers is stronger than that of non-conjugated polymers. This detailed study could provide a clear picture for the host-guest interaction for dynamic conjugated microporous polymers. The mechanism obtained could guide designing new conjugated microporous polymers.
Project description:Developing visible-light-active porous organic polymers with high photocatalytic efficiency is highly desirable. Here, two triazine-based conjugated microporous polymers were synthesized. The structures were controllably adjusted to explore the structure-photocatalytic activity relationship. T-CMP-1 containing more triazine units exhibited a hydrogen evolution rate of 3214.3 μmol h-1 g-1, much higher than that of T-CMP-2 (242.1 μmol h-1 g-1). The increasing contents of triazine units bring better hydrogen evolution efficiency.
Project description:Understanding and controlling the transport mechanisms of small molecules at the micro/nanoscales is vital because they provide a working principle for a variety of practical micro/nanofluidic applications. However, most precedent mechanisms still have remaining obstacles such as complicated fabrication processes, limitations of materials, and undesired damage on samples. Herein, we present the evaporation-driven transport-control of small molecules in gas-permeable and low-aspect ratio nanoslits, wherein both the diffusive and advective mass transports of solutes are affected by solvent evaporation through the nanoslit walls. The effect of the evaporation flux on the mass transport of small molecules in various nanoslit-integrated micro/nanofluidic devices is characterized, and dynamic transport along the nanoslit is investigated by conducting numerical simulations using the advection-diffusion equation. We further demonstrate that evaporation-driven, nanoslit-based transport-control can be easily applied to a micro/nanofluidic channel network in an independent and addressable array, offering a unique working principle for micro/nanofluidic applications and components such as molecule-valves, -concentrators, -pumps, and -filters.
Project description:Novel citric acid based photoluminescent dyes and biodegradable polymers are synthesized via a facile "one-pot" reaction. A comprehensive understanding of the fluorescence mechanisms of the resulting citric acid-based fluorophores is reported. Two distinct types of fluorophores are identified: a thiozolopyridine family with high quantum yield, long lifetime, and exceptional photostability, and a dioxopyridine family with relatively lower quantum yield, multiple lifetimes, and solvent-dependent band shifting behavior. Applications in molecular labeling and cell imaging were demonstrated. The above discoveries contribute to the field of fluorescence chemistry and have laid a solid foundation for further development of new fluorophores and materials that show promise in a diversity of fluorescence-based applications. STATEMENT OF SIGNIFICANCE:Photoluminescent materials are pivotal for fluorescence based imaging, labeling and sensing applications. Understanding their fluorescence mechanism is challenging and imperative. We develop a new class of citric acid-derived fluorescent materials in forms of polymers and small molecular dyes by a one-step solvent free reaction. We discovered two different classes of citric acid-derived fluorophores. A two-ring thiozolopyridine structure demonstrates strong fluorescence and exceptional resistance to photo-bleaching. A one-ring dioxopyridine exhibits relative weak fluorescence but with intriguing excitation and solvent-dependent emission wavelength shifting. Our methodology of synthesizing citric acid-derived fluorophores and the understanding on their luminescence are instrumental to the design and production of a large number of new photoluminescent materials for biological and biomedical applications.