Project description:The aim of this study was to investigate the circadian rhythm of muscle-related gene expression in mackerel tuna under different weather conditions. The experiment was carried out under two weather conditions at four sampling times (6:00, 12:00, 18:00, and 24:00) to determine the expression of growth, function, and rhythm genes: white muscle rhythm genes were rhythmic on sunny and cloudy days, except for PER3 and RORA; all functional genes had daily rhythmicity. Red muscle had daily rhythmicity on both sunny and cloudy days; functional genes had daily rhythmicity except for MBNL. The expression levels of the rhythm gene PER1 were determined to be significantly different by independent t-test samples in white muscle at 6:00, 12:00, 18:00, and 24:00 under different weather conditions; the expression levels of the functional genes MBNL and MSTN were both significantly different. In the red muscle, the expression of the rhythm genes PER3, REVERBA, and BMAL1 was determined by independent t-test samples at 6:00, 12:00, 18:00, and 24:00 on cloudy and sunny days; the functional gene MBNL was significantly different. The present study showed that mackerel tuna muscle rhythm genes and functional genes varied significantly in expression levels depending on weather, time of day, and light intensity and that the expression levels of myogenic genes were closely related to clock gene expression. The fish were also able to adapt to changes in light intensity in different weather conditions through positive physiological regulation.
Project description:The western mosquitofish (Gambusia affinis) is a sexually dimorphic poeciliid fish known for its worldwide biological invasion and therefore an important research model for studying invasion biology. This organism may also be used as a suitable model to explore sex chromosome evolution and reproductive development in terms of differentiation of ZW sex chromosomes, ovoviviparity, and specialization of reproductive organs. However, there is a lack of high-quality genomic data for the female G. affinis; hence, this study aimed to generate a chromosome-level genome assembly for it. The chromosome-level genome assembly was constructed using Oxford nanopore sequencing, BioNano, and Hi-C technology. G. affinis genomic DNA sequences containing 217 contigs with an N50 length of 12.9 Mb and 125 scaffolds with an N50 length of 26.5 Mb were obtained by Oxford nanopore and BioNano, respectively, and the 113 scaffolds (90.4% of scaffolds containing 97.9% nucleotide bases) were assembled into 24 chromosomes (pseudo-chromosomes) by Hi-C. The Z and W chromosomes of G. affinis were identified by comparative genomic analysis of female and male G. affinis, and the mechanism of differentiation of the Z and W chromosomes was explored. Combined with transcriptome data from 6 tissues, a total of 23,997 protein-coding genes were predicted and 23,737 (98.9%) genes were functionally annotated. The high-quality female G. affinis reference genome provides a valuable omics resource for future studies of comparative genomics and functional genomics to explore the evolution of Z and W chromosomes and the reproductive developmental biology of G. affinis.
Project description:Worldwide aquaculture production is increasing, but with this increase comes quality and safety related problems. Hence, there is an urgent need to develop potent technologies to extend the shelf life of fish. Xanthan gum is commonly used in the food industry because of its high-water solubility, stability of its aqueous solutions in a wide pH range, and high viscosity. One of its modern food applications is its use as a gelling agent in edible coatings building. Therefore, in this study, the effect of xanthan coating containing various concentrations (0, 1, 2%; w/v) of ethanolic extract of propolis (EEP) on physicochemical, microbial, and sensory quality indices in mackerel fillets stored at 2 °C for 20 days was evaluated. The pH, peroxide value, K-value, TVB-N, TBARS, microbiological and sensory characteristics were determined every 5 days over the storage period (20 days). Samples treated with xanthan (XAN) coatings containing 1 and 2% of EEP were shown to have the highest level of physicochemical protection and maximum level of microbial inhibition (p < 0.05) compared to uncoated samples (control) over the storage period. Furthermore, the addition of EEP to XAN was more effective in notably preserving (p < 0.05) the taste and odor of coated samples compared to control.
Project description:The teleost fish Monopterus albus is emerging as a new model for biological studies due to its natural sex transition and small genome, in addition to its enormous economic and potential medical value. However, no genomic information for the Monopterus is currently available. Here, we sequenced and de novo assembled the genome of M. albus and report the de novochromosome assembly by FISH walking assisted by conserved synteny (Cafs). Using Cafs, 328 scaffolds were assembled into 12 chromosomes, which covered genomic sequences of 555 Mb, accounting for 81.3% of the sequences assembled in scaffolds (∼689 Mb). A total of 18 ,660 genes were mapped on the chromosomes and showed a nonrandom distribution along chromosomes. We report the first reference genome of the Monopterus and provide an efficient Cafs strategy for a de novo chromosome-level assembly of the Monopterus genome, which provides a valuable resource, not only for further studies in genetics, evolution, and development, particularly sex determination, but also for breed improvement of the species.
Project description:Rapid technological improvements are democratizing access to high quality, chromosome-scale genome assemblies. No longer the domain of only the most highly studied model organisms, now non-traditional and emerging model species can be genome-enabled using a combination of sequencing technologies and assembly software. Consequently, old ideas built on sparse sampling across the tree of life have recently been amended in the face of genomic data drawn from a growing number of high-quality reference genomes. Arguably the most valuable are those long-studied species for which much is already known about their biology; what many term emerging model species. Here, we report a highly complete chromosome-scale genome assembly for the brown anole, Anolis sagrei - a lizard species widely studied across a variety of disciplines and for which a high-quality reference genome was long overdue. This assembly exceeds the vast majority of existing reptile and snake genomes in contiguity (N50 = 253.6 Mb) and annotation completeness. Through the analysis of this genome and population resequence data, we examine the history of repetitive element accumulation, identify the X chromosome, and propose a hypothesis for the evolutionary history of fusions between autosomes and the X that led to the sex chromosomes of A. sagrei.
Project description:Background: The yellow mealworm beetle, Tenebrio molitor, is a promising alternative protein source for animal and human nutrition and its farming involves relatively low environmental costs. For these reasons, its industrial scale production started this century. However, to optimize and breed sustainable new T. molitor lines, the access to its genome remains essential. Methods: By combining Oxford Nanopore and Illumina Hi-C data, we constructed a high-quality chromosome-scale assembly of T. molitor. Then, we combined RNA-seq data and available coleoptera proteomes for gene prediction with GMOVE. Results: We produced a high-quality genome with a N50 = 21.9Mb with a completeness of 99.5% and predicted 21,435 genes with a median size of 1,780 bp. Gene orthology between T. molitor and Tribolium castaneum showed a highly conserved synteny between the two coleoptera and paralogs search revealed an expansion of histones in the T. molitor genome. Conclusions: The present genome will greatly help fundamental and applied research such as genetic breeding and will contribute to the sustainable production of the yellow mealworm.