Project description:The aim of this study was to investigate the circadian rhythm of muscle-related gene expression in mackerel tuna under different weather conditions. The experiment was carried out under two weather conditions at four sampling times (6:00, 12:00, 18:00, and 24:00) to determine the expression of growth, function, and rhythm genes: white muscle rhythm genes were rhythmic on sunny and cloudy days, except for PER3 and RORA; all functional genes had daily rhythmicity. Red muscle had daily rhythmicity on both sunny and cloudy days; functional genes had daily rhythmicity except for MBNL. The expression levels of the rhythm gene PER1 were determined to be significantly different by independent t-test samples in white muscle at 6:00, 12:00, 18:00, and 24:00 under different weather conditions; the expression levels of the functional genes MBNL and MSTN were both significantly different. In the red muscle, the expression of the rhythm genes PER3, REVERBA, and BMAL1 was determined by independent t-test samples at 6:00, 12:00, 18:00, and 24:00 on cloudy and sunny days; the functional gene MBNL was significantly different. The present study showed that mackerel tuna muscle rhythm genes and functional genes varied significantly in expression levels depending on weather, time of day, and light intensity and that the expression levels of myogenic genes were closely related to clock gene expression. The fish were also able to adapt to changes in light intensity in different weather conditions through positive physiological regulation.
Project description:Globel gene expression was analyzed by RNA-seq to study the role of lincRNA TUNA in pluripotent mouse embryonic stem cells. mRNA profiles of CCE mES cells with shRNA-mediated depletion of lincRNA TUNA on days 2, 4, and 6, compared to a control shRNA.
Project description:Cadmium (Cd) is a toxic heavy metal found throughout the environment and one of the top ten toxicants of major public health concern identified by the World Health Organization.InuteroCd exposure causes fetal growth restriction, malformation, and spontaneous abortion; however, the mechanisms by which Cd impacts these outcomes are poorly understood. Cd accumulates in the placenta, suggesting that these negative outcomes may be a consequence of disrupted placental function and placental insufficiency. To understand the impact of Cd on gene expression within the placenta, we developed a mouse model of Cd-induced fetal growth restriction through maternal consumption of CdCl2 and performed RNA-seq on control and CdCl2 exposed placentae. The top differentially expressed transcript was the Tcl1Upstream Neuron-Associated (Tuna) long non-coding RNA, which was up-regulated over 25-fold in CdCl2 exposed placentae. Tuna has been shown to be critical for neural stem cell differentiation. However, within the placenta, there is no evidence that Tuna is normally expressed or functional at any developmental stage. To determine the spatial expression of Cd-activated Tuna within the placenta, we used in situ hybridization as well as placental layer-specific RNA isolation and analysis. Both methods confirmed the absence of Tuna expression in control samples and determined that Cd-induced Tuna expression is specific to the junctional zone. Since many lncRNAs regulate gene expression, we hypothesized that Tunaforms part of the mechanism of Cd-induced transcriptomic changes. To test this, we over-expressed Tuna in cultured choriocarcinoma cells and compared gene expression profiles to those of control and CdCl2 exposed cells. We demonstrate significant overlap between genes activated byTunaoverexpression and genes activated by CdCl2 exposure, with enrichment in the NRF2-mediated oxidative stress response. Herein we analyze the NRF2 pathway and show that Tuna increases NRF2/NRF2 both at the transcript and protein levels. Tuna drives increased NRF2 target gene expression, a result that is abrogated with the use of an NRF2 inhibitor, confirming that Tuna activates oxidative stress response genes through this pathway. This work identifies the lncRNA Tuna as a potential novel player in Cd-induced placental insufficiency.