Project description:Architected materials can achieve impressive shape-changing capabilities according to how their microarchitecture is engineered. Here we introduce an approach for dramatically advancing such capabilities by utilizing wrapped flexure straps to guide the rolling motions of tightly packed micro-cams that constitute the material's microarchitecture. This approach enables high shape-morphing versatility and extreme ranges of deformation without accruing appreciable increases in strain energy or internal stress. Two-dimensional and three-dimensional macroscale prototypes are demonstrated, and the analytical theory necessary to design the proposed materials is provided and packaged as a software tool. An approach that combines two-photon stereolithography and scanning holographic optical tweezers is demonstrated to enable the fabrication of the proposed materials at their intended microscale.
Project description:Despite recent advances in our understanding of the unique mechanical behavior of natural structural materials such as nacre and human bone, traditional manufacturing strategies limit our ability to mimic such nature-inspired structures using existing structural materials and manufacturing processes. To this end, we introduce a customizable single-step approach for additively fabricating geometrically-free metallic-based structural composites showing directionally-tailored, location-specific properties. To exemplify this capability, we present a layered metal-ceramic composite not previously reported exhibiting significant directional and site-specific dependence of properties along with crack arrest ability difficult to achieve using traditional manufacturing approaches. Our results indicate that nature-inspired microstructural designs towards directional properties can be realized in structural components using a novel additive manufacturing approach.
Project description:Advances in manufacturing technologies have enabled architected materials with unprecedented properties. These materials are typically irreversibly designed and fabricated with characteristic geometries and specific mechanical properties, thus rendering them suitable for pre-specified requests. However, these materials cannot be recycled or reconstructed into different shapes and functionalities to economically adapt to various environments. Hence, we present a modular design strategy to create a category of recyclable architected materials comprising elastic initially curved beams and rigid cylindrical magnets. Based on numerical analyses and physical prototypes, we introduce an arc-serpentine curved beam (ASCB) and systematically investigate its mechanical properties. Subsequently, we develop two sets of hierarchical modules for the ASCB, thus expanding the constructable shape of architected materials from regular cuboids to complex curved surfaces. Furthermore, we demonstrate that the magnets attached to the centers of specific serpentine patterns of the modules allows the effective in-situ recycling of the designed materials, including sheet materials for non-damage storage, bulk materials for tunable stiffness, and protective package boxes for reshaping into decorative lampshades. We expect our approach to improve the flexibility of architected materials for multifunctional implementation in resource-limited scenarios.
Project description:Increasing extreme weather events require a corresponding increase in coastal protection. We show that architected materials, which have macroscopic properties that differ from those of their constituent components, can increase wave energy dissipation by more than an order of magnitude over both natural and existing artificial reefs, while providing a biocompatible environment. We present a search that optimized their design through proper hydrodynamic modeling and experimental testing, validated their performance, and characterized sustainable materials for their construction.
Project description:Surface roughness of electrodes plays a key role in the dielectric breakdown of thin-film organic devices. The rate of breakdown will increase when there are stochastic sharp spikes on the surface of electrodes. Additionally, surface having spiking morphology makes the determination of dielectric strength very challenging, specifically when the layer is relatively thin. We demonstrate here a new approach to investigate the dielectric strength of organic thin films for organic light-emitting diodes (OLEDs). The thin films were deposited on a substrate using physical vapor deposition (PVD) under high vacuum. The device architectures used were glass substrate/indium tin oxide (ITO)/organic material/aluminum (Al) and glass substrate/Al/organic material/Al. The dielectric strength of the OLED materials was evaluated from the measured breakdown voltage and layer thickness.
Project description:Crystal-inspired approach is found to be highly successful in designing extraordinarily damage-tolerant architected materials. i.e. meta-crystals, necessitating in-depth fundamental studies to reveal the underlying mechanisms responsible for the strengthening in meta-crystals. Such understanding will enable greater confidence to control not only strength, but also spatial local deformation. In this study, the mechanisms underlying shear band activities were investigated and discussed to provide a solid basis for predicting and controlling the local deformation behaviour in meta-crystals. The boundary strengthening in polycrystal-like meta-crystals was found to relate to the interaction between shear bands and polygrain-like boundaries. More importantly, the boundary type and coherency were found to be influential as they govern the transmission of shear bands across meta-grains boundaries. The obtained insights in this study provide crucial knowledge in developing high strength architected materials with great capacity in controlling and programming the mechanical strength and damage path.
Project description:Fabrication of functionalized 3D architected materials is achieved by a facile method using functionalized acrylates synthesized via thiol-Michael addition, which are then polymerized using two-photon lithography. A wide variety of functional groups can be attached, from Boc-protected amines to fluoroalkanes. Modification of surface wetting properties and conjugation with fluorescent tags are demonstrated to highlight the potential applications of this technique.
Project description:Cellular solids are instrumental in creating lightweight, strong, and damage-tolerant engineering materials. By extending feature size down to the nanoscale, we simultaneously exploit the architecture and material size effects to substantially enhance structural integrity of architected meta-materials. We discovered that hollow-tube alumina nanolattices with 3D kagome geometry that contained pre-fabricated flaws always failed at the same load as the pristine specimens when the ratio of notch length (a) to sample width (w) is no greater than 1/3, with no correlation between failure occurring at or away from the notch. Samples with (a/w)?>?0.3, and notch length-to-unit cell size ratios of (a/l)?>?5.2, failed at a lower peak loads because of the higher sample compliance when fewer unit cells span the intact region. Finite element simulations show that the failure is governed by purely tensile loading for (a/w)?<?0.3 for the same (a/l); bending begins to play a significant role in failure as (a/w) increases. This experimental and computational work demonstrates that the discrete-continuum duality of architected structural meta-materials may give rise to their damage tolerance and insensitivity of failure to the presence of flaws even when made entirely of intrinsically brittle materials.
Project description:The geometric reconfigurations in three-dimensional morphable structures have a wide range of applications in flexible electronic devices and smart systems with unusual mechanical, acoustic, and thermal properties. However, achieving the highly controllable anisotropic transformation and dynamic regulation of architected materials crossing different scales remains challenging. Herein, we develop a magnetic regulation approach that provides an enabling technology to achieve the controllable transformation of morphable structures and unveil their dynamic modulation mechanism as well as potential applications. With buckling instability encoded heterogeneous magnetization profiles inside soft architected materials, spatially and temporally programmed magnetic inputs drive the formation of a variety of anisotropic morphological transformations and dynamic geometric reconfiguration. The introduction of magnetic stimulation could help to predetermine the buckling states of soft architected materials, and enable the formation of definite and controllable buckling states without prolonged magnetic stimulation input. The dynamic modulations can be exploited to build systems with switchable fluidic properties and are demonstrated to achieve capabilities of fluidic manipulation, selective particle trapping, sensitivity-enhanced biomedical analysis, and soft robotics. The work provides new insights to harness the programmable and dynamic morphological transformation of soft architected materials and promises benefits in microfluidics, programmable metamaterials, and biomedical applications.
Project description:Architected materials comprising periodic arrangements of cells have attracted considerable interest in various fields because of their unconventional properties and versatile functionality. Although some better properties may be exhibited when this homogeneous layout is broken, most such studies rely on a fixed material geometry, which limits the design space for material properties. Here, combining heterogeneous and homogeneous assembly of cells to generate tunable geometries, a hierarchically architected material (HAM) capable of significantly enhancing mechanical properties is proposed. Guided by the theoretical model and 745 752 simulation cases, generic design criteria are introduced, including dual screening for unique mechanical properties and careful assembly of specific spatial layouts, to identify the geometry of materials with extreme properties. Such criteria facilitate the potential for unprecedented properties such as Young's modulus at the theoretical limit and tunable positive and negative Poisson's ratios in an ultra-large range. Therefore, this study opens a new paradigm for materials with extreme mechanical properties.