Unknown

Dataset Information

0

Monolithic processing of a layered flexible robotic actuator film for kinetic electronics.


ABSTRACT: Low-invasive soft robotic techniques can potentially be used for developing next-generation body-machine interfaces. Most soft robots require complicated fabrication processes involving 3D printing and bonding/assembling. In this letter, we describe a monolithic soft microrobot fabrication process for the mass production of soft film robots with a complex structure by simple 2D processing of a robotic actuator film. The 45 µg/mm2 lightweight film robot can be driven at a voltage of CMOS compatible 5 V with 0.15 mm-1 large curvature changes; it can generate a force 5.7 times greater than its self-weight. In a durability test, actuation could be carried out over 8000 times without degradation. To further demonstrate this technique, three types of film robots with multiple degrees of freedom and a moving illuminator robot were fabricated. This technique can easily integrate various electrical circuits developed in the past to robotic systems and can be used for developing advanced wearable sensing devices; it can be called "Kinetic electronics".

SUBMITTER: Zhang S 

PROVIDER: S-EPMC8501038 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC3794378 | biostudies-literature
| S-EPMC3602909 | biostudies-literature
| S-EPMC10883012 | biostudies-literature
| S-EPMC3701897 | biostudies-other
| S-EPMC10238208 | biostudies-literature
| S-EPMC5848965 | biostudies-literature
| S-EPMC5052609 | biostudies-literature
| S-EPMC3575016 | biostudies-literature
| S-EPMC4338756 | biostudies-literature
| S-EPMC8694591 | biostudies-literature