Experimental and computational investigation of waste heat recovery from combustion device for household purposes
Ontology highlight
ABSTRACT: Waste heat recovery along with low-grade energy can be utilized for numerous applications in our daily life. This manuscript presents a novel idea of utilizing the waste heat from domestic cooking devices for assisting the solar desalination system through simulation and validated experimentally. To assess the potential of waste heat from a 2D axisymmetric model of water jacket has made using ANSYS Fluent while applying the user-defined function (UDF) to the outermost wall of the cookstove having the temperature as high as 340 °C during the operation. Further, to ensure the recovery of the waste heat, without affecting the performance of the cookstove, an air gap of 0.05 cm was provided between the combustion chamber and the water jacket. The efficiency of the original cookstove without air gap was found to be ~ 33%, which enhanced up to ~ 43.79% without flow of water in the jacket, and finally reached up to 56% when water flows in the jacket. This indicates that the arrangement used in this particular study has not only recovered the waste heat but also improved the overall performance by ~ 69.34%, without disturbing the cooking phenomenon. Supplementary Information
The online version contains supplementary material available at 10.1007/s40095-021-00430-z.
SUBMITTER: Singh S
PROVIDER: S-EPMC8502790 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA