Project description:Herein, we present an undirected para-selective two-step C-H alkylation of complex arenes useful for late-stage functionalization. The combination of a site-selective C-H thianthrenation with palladium-catalyzed reductive electrophile cross-coupling grants access to a diverse range of synthetically useful alkylated arenes which cannot be accessed otherwise with comparable selectivity, diversity, and practicality. The robustness of this transformation is further demonstrated by thianthrenium-based reductive coupling of two complex fragments.
Project description:Aryl sulfinates are precursors to a diverse number of sulfonyl-derived arenes, which are common motifs in pharmaceuticals and agrochemicals. Here, we report a site-selective two-step C-H sulfination sequence via aryl sulfonium salts to access aryl sulfonamides. Combined with site-selective aromatic thianthrenation, an operationally simple one-pot palladium-catalyzed protocol introduces the sulfonyl group using sodium hydroxymethylsulfinate (Rongalite) as a source of SO22-. The hydroxymethyl sulfone intermediate generated from the catalytic process can be employed as a synthetic handle to deliver a variety of sulfonyl-containing compounds.
Project description:The reductive cleavage of the C-O bonds of aryl ethers has great potential in organic synthesis. Although several catalysts that can promote the reductive cleavage of aryl ethers have been reported, all such systems require the use of an external reductant, e.g., hydrosilane or hydrogen. Here, we report the development of a new nickel-based catalytic system that can cleave the C-O bonds of ethers in the absence of an external reductant. The hydrogen atom required in this new reductive cleavage reaction is provided by the alkoxy group of the substrate, which serves as an internal reductant. The absence of an external reductant enables the unique chemoselectivity, i.e., the selective reduction of an alkoxy group over alkenes and ketones.
Project description:A general method is presented for the synthesis of alkylated arenes by the chemoselective combination of two electrophilic carbons. Under the optimized conditions, a variety of aryl and vinyl bromides are reductively coupled with alkyl bromides in high yields. Under similar conditions, activated aryl chlorides can also be coupled with bromoalkanes. The protocols are highly functional-group tolerant (-OH, -NHTs, -OAc, -OTs, -OTf, -COMe, -NHBoc, -NHCbz, -CN, -SO(2)Me), and the reactions are assembled on the benchtop with no special precautions to exclude air or moisture. The reaction displays different chemoselectivity than conventional cross-coupling reactions, such as the Suzuki-Miyaura, Stille, and Hiyama-Denmark reactions. Substrates bearing both an electrophilic and nucleophilic carbon result in selective coupling at the electrophilic carbon (R-X) and no reaction at the nucleophilic carbon (R-[M]) for organoboron (-Bpin), organotin (-SnMe(3)), and organosilicon (-SiMe(2)OH) containing organic halides (X-R-[M]). A Hammett study showed a linear correlation of σ and σ(-) parameters with the relative rate of reaction of substituted aryl bromides with bromoalkanes. The small ρ values for these correlations (1.2-1.7) indicate that oxidative addition of the bromoarene is not the turnover-frequency determining step. The rate of reaction has a positive dependence on the concentration of alkyl bromide and catalyst, no dependence upon the amount of zinc (reducing agent), and an inverse dependence upon aryl halide concentration. These results and studies with an organic reductant (TDAE) argue against the intermediacy of organozinc reagents.
Project description:General photoactivation of electron donor-acceptor (EDA) complexes between arylsulfonium salts and 1,4-diazabicyclo[2.2.2]octane with visible light or natural sunlight was discovered. This practical and efficient mode enables the production of aryl radicals under mild conditions, providing an unrealized opportunity for two-step para-selective C-H functionalization of complex arenes. The novel mode for generating aryl radicals via an EDA complex was well supported by UV-vis absorbance measurements, nuclear magnetic resonance titration experiments, and density functional theory (DFT) calculations. The method was applied to the regio- and stereo-selective arylation of various N-heterocycles under mild conditions, yielding an assembly of challengingly linked heteroaryl-(hetero)aryl products. Remarkably, the meaningful couplings of bioactive molecules with structurally complex drugs or agricultural pharmaceuticals were achieved to display favorable in vitro antitumor activities, which will be of great value in academia or industry.
Project description:Rhodium(ii)-catalyzed unusual branch-selective ortho-C-H alkylation of aryl sulfonamides with vinylsilanes was achieved using an 8-aminoquinoline directing group. Notably, the para-substituted aryl sulfonamides gave mono-(branched)alkylated products exclusively without the formation of any double C-H alkylated byproducts. The results of deuterium labeling experiments suggest that both hydrometalation and carbometalation pathways are involved in this conversion.
Project description:Substituted arenes are ubiquitous in molecules with medicinal functions, making their synthesis a critical consideration when designing synthetic routes. Regioselective C-H functionalization reactions are attractive for preparing alkylated arenes; however, the selectivity of existing methods is modest and primarily governed by the substrate's electronic properties. Here, we demonstrate a biocatalyst-controlled method for the regioselective alkylation of electron-rich and electron-deficient heteroarenes. Starting from an unselective "ene"-reductase (ERED) (GluER-T36A), we evolved a variant that selectively alkylates the C4 position of indole, an elusive position using prior technologies. Mechanistic studies across the evolutionary series indicate that changes to the protein active site alter the electronic character of the charge transfer (CT) complex responsible for radical formation. This resulted in a variant with a significant degree of ground-state CT in the CT complex. Mechanistic studies on a C2-selective ERED suggest that the evolution of GluER-T36A helps disfavor a competing mechanistic pathway. Additional protein engineering campaigns were carried out for a C8-selective quinoline alkylation. This study highlights the opportunity to use enzymes for regioselective radical reactions, where small molecule catalysts struggle to alter selectivity.
Project description:Substituted arenes are ubiquitous in molecules with medicinal functions, making their synthesis a critical consideration when designing synthetic routes. 1,2 Regioselective C-H functionalization reactions are attractive for preparing alkylated arenes, 3-5 however, the selectivity of existing methods is modest and primarily governed by substrate electronic properties. 6,7 Here, we demonstrate a biocatalyst-controlled method for the regioselective alkylation of electron-rich and electron-deficient heteroarenes. Starting from an unselective 'ene'-reductase (ERED) (GluER-T36A), we evolved a variant that selectively alkylates the C4 position of indole, an elusive position using prior technologies. Mechanistic studies across the evolutionary series indicate that changes to the protein active site alter the electronic character of the charge transfer (CT) complex responsible for radical formation. This resulted in a variant with a significant degree of ground state change transfer in the CT complex. Mechanistic studies on a C2 selective ERED suggest that the evolution of GluER-T36A helps disfavor a competing mechanistic pathway. Additional protein engineering campaigns were carried out for a C8 selective quinoline alkylation. This study highlights the opportunity to use enzymes for regioselective reactions where small molecule catalysts struggle to alter selectivity.
Project description:A photocatalytic system for the dearomative hydroarylation of benzene derivatives has been developed. Using a combination of an organic photoredox catalyst and an amine reductant, this process operates through a reductive radical-polar crossover mechanism where aryl halide reduction triggers a regioselective radical cyclization event, followed by anion formation and quenching to produce a range of complex spirocyclic cyclohexadienes. This light-driven protocol functions at room temperature in a green solvent system (aq. MeCN) without the need for precious metal-based catalysts or reagents or the generation of stoichiometric metal byproducts.
Project description:C-F functionalizations that provide C-C bonds are challenging synthetic transformations, due in part to the large C-F bond strength, short bond length, nonpolarizable nature, the production of fluoride, and the regioselectivity-in the case of multifluorinated substrates. However, commercially available highly fluorinated arenes possess great synthetic potential because they already possess the C-F bonds in the desired locations that would be difficult to selectively fluorinate. In order to take advantage of this potential, selective C-F functionalizations must be developed. Herein, we disclose conditions for the photocatalytic reductive alkylation of highly fluorinated arenes with ubiquitous and unactivated alkenes. The mild reaction conditions provide for a broad functional group scope, and the reaction is remarkably efficient using just 0.25 mol% catalyst. Finally, we demonstrate the utility of the strategy by converting highly fluorinated arenes to elaborate (hetero)arenes that contain 2-5 Caryl-F bonds via synergistic use of photocatalysis and SNAr chemistry.