Unknown

Dataset Information

0

3D Ultralight Hollow NiCo Compound@MXene Composites for Tunable and High-Efficient Microwave Absorption.


ABSTRACT: The 3D hollow hierarchical architectures tend to be designed for inhibiting stack of MXene flakes to obtain satisfactory lightweight, high-efficient and broadband absorbers. Herein, the hollow NiCo compound@MXene networks were prepared by etching the ZIF 67 template and subsequently anchoring the Ti3C2Tx nanosheets through electrostatic self-assembly. The electromagnetic parameters and microwave absorption property can be distinctly or slightly regulated by adjusting the filler loading and decoration of Ti3C2Tx nanoflakes. Based on the synergistic effects of multi-components and special well-constructed structure, NiCo layered double hydroxides@Ti3C2Tx (LDHT-9) absorber remarkably achieves unexpected effective absorption bandwidth (EAB) of 6.72 GHz with a thickness of 2.10 mm, covering the entire Ku-band. After calcination, transition metal oxide@Ti3C2Tx (TMOT-21) absorber near the percolation threshold possesses minimum reflection loss (RLmin) value of - 67.22 dB at 1.70 mm within a filler loading of only 5 wt%. This work enlightens a simple strategy for constructing MXene-based composites to achieve high-efficient microwave absorbents with lightweight and tunable EAB.

SUBMITTER: Wang HY 

PROVIDER: S-EPMC8505608 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC9181992 | biostudies-literature
| S-EPMC8895119 | biostudies-literature
| S-EPMC5559606 | biostudies-literature
| S-EPMC8368508 | biostudies-literature
| S-EPMC8861240 | biostudies-literature
| S-EPMC7481728 | biostudies-literature
| S-EPMC10412520 | biostudies-literature
| S-EPMC8289940 | biostudies-literature
| S-EPMC4837409 | biostudies-literature
| S-EPMC9054383 | biostudies-literature