Project description:Immunocompromised individuals were not included in formal trials of SARS-CoV-2 mRNA vaccines. Subsequent studies in patients with hematologic malignancies and solid organ transplantation recipients suggest inferior responses to vaccination. We determined antibody responses to a single dose of vaccines in one of the most vulnerable patient groups, allogeneic hematopoietic cell transplantation (allo-HCT) recipients. Pfizer-BioNTech (PB) or AstraZeneca (AZ) SARS-CoV-2 vaccines were administered at least 3 months post-transplantation to 55 adult allo-HCT recipients. We found that older age and concurrent use of immunosuppressive medications were significantly associated with lack of antibody response to vaccination. Only 21% of patients on systemic immunosuppression mounted a response, compared with 58% of patients not on immunosuppression (P = .006). We also show that responses to the AZ vaccine may be superior to responses to the PB vaccine in this cohort. These findings highlight the need for novel immunogenic vaccine formulations and schedules in these highest-risk patients, as well as continued public healthy safety measures to protect the most vulnerable members of our society.
Project description:To determine factors influencing the vaccination response against SARS-CoV-2 is of importance in recipients of allogeneic hematopoietic cell transplantation (allo-HCT) as they display an increased mortality after SARS-CoV-2 infection, an increased risk of extended viral persistence and reduced vaccination response. Real-life data on anti-SARS-CoV-2-S1-IgG titers (n = 192) and IFN-γ release (n = 110) of allo-HCT recipients were obtained using commercially available, validated assays after vaccination with either mRNA (Comirnaty™, Pfizer-BioNTech™, NY, US and Mainz, Germany or Spikevax™, Moderna™, Cambridge, Massachusetts, US) or vector-based vaccines (Vaxzevria™,AstraZeneca™, Cambridge, UK or Janssen COVID-19 vaccine™Johnson/Johnson, New Brunswick, New Jersey, US), or after a heterologous protocol (vector/mRNA). Humoral response (78% response rate) was influenced by age, time after transplantation, the usage of antithymocyte globulin (ATG) and ongoing immunosuppression, specifically corticosteroids. High counts of B cells during the vaccination period correlated with a humoral response. Only half (55%) of participants showed a cellular vaccination response. It depended on age, time after transplantation, ongoing immunosuppression with ciclosporin A, chronic graft-versus-host disease (cGvHD) and vaccination type, with vector-based protocols favoring a response. Cellular response failure correlated with a higher CD8+ count and activated/HLA-DR+ T cells one year after transplantation. Our data provide the basis to assess both humoral and cellular responses after SARS-CoV2 vaccination in daily practice, thereby opening up the possibility to identify patients at risk.
Project description:Although children have been largely spared from coronavirus disease 2019 (COVID-19), the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC) with increased transmissibility, combined with fluctuating mask mandates and school re-openings, have led to increased infections and disease among children. Thus, there is an urgent need to roll out COVID-19 vaccines to children of all ages. However, whether children respond equivalently to adults to mRNA vaccines and whether dosing will elicit optimal immunity remains unclear. Here we aimed to deeply profile the vaccine-induced humoral immune response in 6 to 11 year old children receiving either a pediatric (50 μg) or adult (100 μg) dose of the mRNA-1273 vaccine and to compare these responses to vaccinated adults, infected children, and children that experienced multisystem inflammatory syndrome in children (MIS-C). Children elicited an IgG-dominant vaccine-induced immune response, surpassing adults at a matched 100 μg dose, but more variable immunity at a 50 μg dose. Irrespective of titer, children generated antibodies with enhanced Fc-receptor binding capacity. Moreover, like adults, children generated cross-VOC humoral immunity, marked by a decline of omicron-specific receptor binding domain-binding, but robustly preserved omicron spike protein-binding. Fc-receptor binding capabilities were also preserved in a dose dependent manner. These data indicate that both the 50 μg and 100 μg doses of mRNA vaccination in children elicits robust cross-VOC antibody responses and that 100 μg doses in children results in highly preserved omicron-specific functional humoral immunity.
Project description:Vaccines against SARS-CoV-2 have been rapidly approved. Although pivotal studies were conducted in healthy volunteers, little information is available on the safety and efficacy of mRNA vaccines in immunocompromised patients, including recipients of allogeneic hematopoietic cell transplantation (allo-HCT). Here we used a novel assay to analyze patient- and transplantation-related factors and their influence on immune responses to SARS-CoV-2 vaccination over an extended period (up to 6 months) in a large and homogenous group of allo-HCT recipients at a single center in Switzerland. We examined longitudinal antibody responses to SARS-CoV-2 vaccination with BNT162b2 (BioNTech/Pfizer) and mRNA-1273 (Moderna) in 110 allo-HCT recipients and 86 healthy controls. Seroprofiling recording IgG, IgA, and IgM reactivity against SARS-CoV-2 antigens (receptor-binding domain, spike glycoprotein subunits S1 and S2, and nucleocapsid protein) was performed before vaccination, before the second dose, and at 1, 3, and 6 months after the second dose. Patients were stratified to 3 groups: 3 to 6 months post-allo-HCT, 6 to 12 months post-allo-HCT, and >12 months post-allo-HCT. Patients in the 3 to 6 months and 6 to 12 months post-allo-HCT groups developed significantly lower antibody titers after vaccination compared with patients in the >12 months post-allo-HCT group and healthy controls (P < .001). Within the cohort of allo-HCT recipients, patients age >65 years (P = .030), those receiving immunosuppression for prevention or treatment of graft-versus-host disease (GVHD) (P = .033), and patients with relapsed disease (P = .014) displayed low humoral immune responses to the vaccine. In contrast, the intensity of the conditioning regimen, underlying disease (myeloid/lymphoid/other), and presence of chronic GVHD had no impact on antibody levels. Antibody titers achieved the highest levels at 1 month after the second dose of the vaccine but waned substantially in all transplantation groups and healthy controls over time. This analysis of long-term vaccine antibody response is of critical importance to allo-HCT recipients and transplant physicians to guide treatment decisions regarding revaccination and social behavior during the SARS-CoV-2 pandemic.
Project description:SARS-CoV-2 mRNA vaccines induce robust anti-spike (S) antibody and CD4+ T cell responses. It is not yet clear whether vaccine-induced follicular helper CD4+ T (TFH) cell responses contribute to this outstanding immunogenicity. Using fine-needle aspiration of draining axillary lymph nodes from individuals who received the BNT162b2 mRNA vaccine, we evaluated the T cell receptor sequences and phenotype of lymph node TFH. Mining of the responding TFH T cell receptor repertoire revealed a strikingly immunodominant HLA-DPB1∗04-restricted response to S167-180 in individuals with this allele, which is among the most common HLA alleles in humans. Paired blood and lymph node specimens show that while circulating S-specific TFH cells peak one week after the second immunization, S-specific TFH persist at nearly constant frequencies for at least six months. Collectively, our results underscore the key role that robust TFH cell responses play in establishing long-term immunity by this efficacious human vaccine.
Project description:IntroductionPatients after allogeneic stem cell transplantation are at high risk for infection-related complications, and vaccination efficacy might be impaired depending on the immune reconstitution. In this study, we evaluate their response to mRNA vaccines against SARS-CoV-2.MethodsDuring routine follow-up visits, patients were asked about their vaccination status and if they had a previous infection with SARS-CoV-2. In fully vaccinated patients, the antibody titer was measured using the Roche Elecsys Anti-SARS-CoV-2 S test. A titer of <1 U/L was considered as negative, titers of ≥250 U/ml as a high antibody titer, and a titer of 50-249 U/ml as a low antibody titer. Patient characteristics were evaluated by chart review to identify risk factors for poor vaccination response.ResultsThe majority of patients developed a high antibody titer (138 out 182 patients, 75.8%). Risk factors for a low antibody titer were immunosuppressive therapy, a lymphocyte count <0.9 G/L, ongoing treatment for the underlying malignancy, and active graft-versus-host disease (GvHD). Donor type, underlying disease, a previous SARS-CoV-2 infection, and sex did not significantly influence the response to the vaccination.DiscussionWhile patients undergoing allogeneic stem cell transplantation have been excluded from the initial registration trials, our real-world experience with a large patient cohort confirms the data of previous studies, showing that most patients do have a good response to mRNA vaccines against SARS-CoV-2. Nevertheless, a significant proportion of patients shows an inadequate vaccination, which can be improved after a third vaccination in most cases despite immunosuppressive therapy.
Project description:COVID-19-related mortality among hematopoietic stem cell transplantation (HSCT) recipients in the pre-vaccine era ranged between 22 and 33%. The Pfizer/BioNTech BNT162b2 vaccine demonstrated significant immunogenicity and efficacy in the healthy population; however, its long-term effects on allogeneic HSCT recipients remained unclear. Our study longitudinally evaluated humoral and cellular responses to the BNT162b2 vaccine in adult allogeneic HSCT patients. A positive response was defined as antibody titers ≥ 150 AU/mL post-second vaccination. Among 77 included patients, 51 (66.2%) responded to vaccination. Response-associated factors were female gender, recent anti-CD20 therapy, and a longer interval between transplant and vaccination. Response rates reached 83.7% in patients vaccinated >12 months post-transplant. At 6 months post-second vaccination, antibody titers dropped, but were significantly increased with the booster dose. Moreover, 43% (6/14) of non-responders to the second vaccination acquired sufficient antibody titers after booster administration, resulting in an overall response rate of 79.5% for the entire cohort. The BNT162b2 vaccine was effective in allogeneic transplant recipients. Although antibody titers decreased with time, the third vaccination led to their significant elevation, with 93% of third-dose responders maintaining titers above 150 AU/mL at 3 months post-administration.
Project description:Allogeneic haematopoietic stem cell transplantation currently represents the primary potentially curative treatment for cancers of the blood and bone marrow. While relapse occurs in approximately 30% of patients, few risk-modifying genetic variants have been identified. The present study evaluates the predictive potential of patient genetics on relapse risk in a genome-wide manner. We studied 151 graft recipients with HLA-matched sibling donors by sequencing the whole-exome, active immunoregulatory regions, and the full MHC region. To assess the predictive capability and contributions of SNPs and INDELs, we employed machine learning and a feature selection approach in a cross-validation framework to discover the most informative variants while controlling against overfitting. Our results show that germline genetic polymorphisms in patients entail a significant contribution to relapse risk, as judged by the predictive performance of the model (AUC = 0.72 [95% CI: 0.63-0.81]). Furthermore, the top contributing variants were predictive in two independent replication cohorts (n = 258 and n = 125) from the same population. The results can help elucidate relapse mechanisms and suggest novel therapeutic targets. A computational genomic model could provide a step toward individualized prognostic risk assessment, particularly when accompanied by other data modalities.