Project description:Immunocompromised individuals were not included in formal trials of SARS-CoV-2 mRNA vaccines. Subsequent studies in patients with hematologic malignancies and solid organ transplantation recipients suggest inferior responses to vaccination. We determined antibody responses to a single dose of vaccines in one of the most vulnerable patient groups, allogeneic hematopoietic cell transplantation (allo-HCT) recipients. Pfizer-BioNTech (PB) or AstraZeneca (AZ) SARS-CoV-2 vaccines were administered at least 3 months post-transplantation to 55 adult allo-HCT recipients. We found that older age and concurrent use of immunosuppressive medications were significantly associated with lack of antibody response to vaccination. Only 21% of patients on systemic immunosuppression mounted a response, compared with 58% of patients not on immunosuppression (P = .006). We also show that responses to the AZ vaccine may be superior to responses to the PB vaccine in this cohort. These findings highlight the need for novel immunogenic vaccine formulations and schedules in these highest-risk patients, as well as continued public healthy safety measures to protect the most vulnerable members of our society.
Project description:Vaccines against SARS-CoV-2 have been rapidly approved. Although pivotal studies were conducted in healthy volunteers, little information is available on the safety and efficacy of mRNA vaccines in immunocompromised patients, including recipients of allogeneic hematopoietic cell transplantation (allo-HCT). Here we used a novel assay to analyze patient- and transplantation-related factors and their influence on immune responses to SARS-CoV-2 vaccination over an extended period (up to 6 months) in a large and homogenous group of allo-HCT recipients at a single center in Switzerland. We examined longitudinal antibody responses to SARS-CoV-2 vaccination with BNT162b2 (BioNTech/Pfizer) and mRNA-1273 (Moderna) in 110 allo-HCT recipients and 86 healthy controls. Seroprofiling recording IgG, IgA, and IgM reactivity against SARS-CoV-2 antigens (receptor-binding domain, spike glycoprotein subunits S1 and S2, and nucleocapsid protein) was performed before vaccination, before the second dose, and at 1, 3, and 6 months after the second dose. Patients were stratified to 3 groups: 3 to 6 months post-allo-HCT, 6 to 12 months post-allo-HCT, and >12 months post-allo-HCT. Patients in the 3 to 6 months and 6 to 12 months post-allo-HCT groups developed significantly lower antibody titers after vaccination compared with patients in the >12 months post-allo-HCT group and healthy controls (P < .001). Within the cohort of allo-HCT recipients, patients age >65 years (P = .030), those receiving immunosuppression for prevention or treatment of graft-versus-host disease (GVHD) (P = .033), and patients with relapsed disease (P = .014) displayed low humoral immune responses to the vaccine. In contrast, the intensity of the conditioning regimen, underlying disease (myeloid/lymphoid/other), and presence of chronic GVHD had no impact on antibody levels. Antibody titers achieved the highest levels at 1 month after the second dose of the vaccine but waned substantially in all transplantation groups and healthy controls over time. This analysis of long-term vaccine antibody response is of critical importance to allo-HCT recipients and transplant physicians to guide treatment decisions regarding revaccination and social behavior during the SARS-CoV-2 pandemic.
Project description:SARS-CoV-2 mRNA vaccines induce robust anti-spike (S) antibody and CD4+ T cell responses. It is not yet clear whether vaccine-induced follicular helper CD4+ T (TFH) cell responses contribute to this outstanding immunogenicity. Using fine-needle aspiration of draining axillary lymph nodes from individuals who received the BNT162b2 mRNA vaccine, we evaluated the T cell receptor sequences and phenotype of lymph node TFH. Mining of the responding TFH T cell receptor repertoire revealed a strikingly immunodominant HLA-DPB1∗04-restricted response to S167-180 in individuals with this allele, which is among the most common HLA alleles in humans. Paired blood and lymph node specimens show that while circulating S-specific TFH cells peak one week after the second immunization, S-specific TFH persist at nearly constant frequencies for at least six months. Collectively, our results underscore the key role that robust TFH cell responses play in establishing long-term immunity by this efficacious human vaccine.
Project description:IntroductionPatients after allogeneic stem cell transplantation are at high risk for infection-related complications, and vaccination efficacy might be impaired depending on the immune reconstitution. In this study, we evaluate their response to mRNA vaccines against SARS-CoV-2.MethodsDuring routine follow-up visits, patients were asked about their vaccination status and if they had a previous infection with SARS-CoV-2. In fully vaccinated patients, the antibody titer was measured using the Roche Elecsys Anti-SARS-CoV-2 S test. A titer of <1 U/L was considered as negative, titers of ≥250 U/ml as a high antibody titer, and a titer of 50-249 U/ml as a low antibody titer. Patient characteristics were evaluated by chart review to identify risk factors for poor vaccination response.ResultsThe majority of patients developed a high antibody titer (138 out 182 patients, 75.8%). Risk factors for a low antibody titer were immunosuppressive therapy, a lymphocyte count <0.9 G/L, ongoing treatment for the underlying malignancy, and active graft-versus-host disease (GvHD). Donor type, underlying disease, a previous SARS-CoV-2 infection, and sex did not significantly influence the response to the vaccination.DiscussionWhile patients undergoing allogeneic stem cell transplantation have been excluded from the initial registration trials, our real-world experience with a large patient cohort confirms the data of previous studies, showing that most patients do have a good response to mRNA vaccines against SARS-CoV-2. Nevertheless, a significant proportion of patients shows an inadequate vaccination, which can be improved after a third vaccination in most cases despite immunosuppressive therapy.
Project description:Ruxolitinib, a selective inhibitor of Janus kinases 1 and 2, is increasingly being used in allogeneic hematopoietic cell transplantation (HCT) recipients following its approval by the U.S. Food and Drug Administration for the treatment of steroid-refractory acute graft-versus-host disease. Although there is extensive experience using ruxolitinib for patients with myeloproliferative neoplasms, the biologic effects and clinical implications of its dosing, tapering, and discontinuation for allogeneic HCT recipients are incompletely characterized. We describe three allogeneic HCT recipients who developed acute hypoxemic respiratory failure within 3 months of ruxolitinib discontinuation. Radiographic findings included marked bilateral ground-glass opacities. Systemic corticosteroids and reinitiation of ruxolitinib resulted in rapid clinical improvement in all three patients. All three patients achieved a significant clinical response, with decrease in oxygen requirement and improvement in radiographic changes. Given the increasing use of ruxolitinib in allogeneic HCT recipients, there is significant impetus to characterize the biologic and clinical effects resulting from discontinuation of ruxolitinib, to better tailor treatment plans and prevent potential adverse effects.
Project description:Allogeneic haematopoietic stem cell transplantation currently represents the primary potentially curative treatment for cancers of the blood and bone marrow. While relapse occurs in approximately 30% of patients, few risk-modifying genetic variants have been identified. The present study evaluates the predictive potential of patient genetics on relapse risk in a genome-wide manner. We studied 151 graft recipients with HLA-matched sibling donors by sequencing the whole-exome, active immunoregulatory regions, and the full MHC region. To assess the predictive capability and contributions of SNPs and INDELs, we employed machine learning and a feature selection approach in a cross-validation framework to discover the most informative variants while controlling against overfitting. Our results show that germline genetic polymorphisms in patients entail a significant contribution to relapse risk, as judged by the predictive performance of the model (AUC = 0.72 [95% CI: 0.63-0.81]). Furthermore, the top contributing variants were predictive in two independent replication cohorts (n = 258 and n = 125) from the same population. The results can help elucidate relapse mechanisms and suggest novel therapeutic targets. A computational genomic model could provide a step toward individualized prognostic risk assessment, particularly when accompanied by other data modalities.
Project description:Allogeneic hematopoietic stem cell transplantation (allo-HSCT) represents a potentially curative strategy for many oncological and non-oncological diseases, but it is associated with marked morbidity and mortality. The disruption of gut microbiota (GM) eubiosis has been linked to major allo-HSCT complications, including infections and acute graft vs. host disease (aGvHD), and correlates with mortality. This increasing knowledge on the role of the GM in the allo-HSCT procedure has led to fascinating ideas for modulating the intestinal ecosystem in order to improve clinical outcomes. Nutritional strategies, either by changing the route of nutritional supplementation or by administering specific molecules, are increasingly being considered as cost- and risk-effective methods of modulating the GM. Nutritional support has also emerged in the past several years as a key feature in supportive care for allo-HSCT recipients, and deterioration of nutritional status is associated with decreased overall survival and higher complication rates during treatment. Herein we provide a complete overview focused on nutritional modulation of the GM in allo-HSCT recipients. We address how pre transplant diet could affect GM composition and its ability to withstand the upsetting events occurring during transplantation. We also provide a complete overview on the influence of the route of nutritional administration on the intestinal ecosystem, with a particular focus on the comparison between enteral and parenteral nutrition (PN). Moreover, as mounting evidence are showing how specific components of post-transplant diet, such as lactose, could drastically shape the GM, we will also summarize the role of prebiotic supplementation in the modulation of the intestinal flora and in allo-HSCT outcomes.
Project description:Although most studies describing coronavirus disease 2019 vaccine responses have focused on antibodies, there is increasing evidence that T cells play a critical role. Here the authors evaluated T-cell responses in seronegative donors before and after vaccination to define responses to the severe acute respiratory syndrome coronavirus 2 reference strain as well as to mutations in the variant strains Alpha/B.1.1.7 and Beta/B.1.351. The authors observed enhanced T-cell responses to reference and variant spike strains post-vaccination.