Unknown

Dataset Information

0

Shaping ability of four single-file systems in the instrumentation of second mesiobuccal canals of three-dimensional printed maxillary first molars.


ABSTRACT:

Background

This study evaluated and compared the shaping ability of four advanced single-file nickel-titanium (NiTi) systems during the preparation of curved second mesiobuccal (MB2) canals in maxillary first molar replicas fabricated by three-dimensional (3D) printing via micro-computed tomography (Micro-CT) imaging.

Methods

A total of 60 3D-printed maxillary first molar replicas were constructed from one extracted tooth, with an angle of curvature ranging from 15° to 25°. The MB2 canals from these 60 replicas were divided into 4 groups of 15 replicas according to the canal instrumentation system used, namely, Waveone gold (WOG), Reciproc blue (RCB), XP-endo shaper (XPS) and M3-L. The specimens were scanned before and after preparation using Micro-CT. The pre- and post-instrumentation images of each specimen were superimposed, and the amount of resin removed, the change in surface area, the canal transportation, and centering ability were assessed using the Mimics software. Instrumentation time was also recorded. One-way analysis of variance and least significant difference (LSD) tests were used to statistically compare the groups. The significance level was set at 5%.

Results

Instrumentation time with M3-L was significantly longer than the other systems (P<0.05). The amount of resin removed and the change in surface area generated by the 4 systems were different at the apical, middle, and coronal thirds, and the total canal (P<0.05). Overall, WOG and XPS resulted in the less change than RCB and M3-L. There was no significant difference among the groups at the middle third regarding canal transportation and centering ability (P>0.05). However, a significant difference was found at the apical level (P<0.05), where RCB showed the poorest centering ability and the highest canal transportation (P<0.05). In addition, XPS resulted in the least canal transportation (P<0.05) at the coronal level, while there was no significant difference between the four groups in terms of centering ability.

Conclusions

The M3-L instrument required more time to prepare the curved MB2 canals compared with the other systems. Overall, WOG and XPS showed the least resin removal and surface area change. M3-L, XPS, and WOG instruments respected the original canal curvature better than RCB files.

SUBMITTER: Xu F 

PROVIDER: S-EPMC8506727 | biostudies-literature | 2021 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Shaping ability of four single-file systems in the instrumentation of second mesiobuccal canals of three-dimensional printed maxillary first molars.

Xu Fulu F   Zhang Yuerong Y   Gu Yongchun Y   Ping Yifan Y   Zhou Ruyu R   Wang Juan J  

Annals of translational medicine 20210901 18


<h4>Background</h4>This study evaluated and compared the shaping ability of four advanced single-file nickel-titanium (NiTi) systems during the preparation of curved second mesiobuccal (MB2) canals in maxillary first molar replicas fabricated by three-dimensional (3D) printing via micro-computed tomography (Micro-CT) imaging.<h4>Methods</h4>A total of 60 3D-printed maxillary first molar replicas were constructed from one extracted tooth, with an angle of curvature ranging from 15° to 25°. The MB  ...[more]

Similar Datasets

| S-EPMC6070255 | biostudies-literature
| S-EPMC5543659 | biostudies-other
| S-EPMC7843171 | biostudies-literature
| S-EPMC6592588 | biostudies-literature
| S-EPMC4408636 | biostudies-other
| S-EPMC6296330 | biostudies-literature
| S-EPMC10912427 | biostudies-literature
| S-EPMC5527199 | biostudies-other
| S-EPMC8322059 | biostudies-literature
| S-EPMC5527201 | biostudies-other