Project description:Membranes for organic solvent nanofiltration (OSN) or solvent-resistant nanofiltration (SRNF) offer unprecedented opportunities for highly efficient and cost-competitive solvent recovery in the pharmaceutical industry. Here, we describe small-flake graphene oxide (SFGO) membranes for high-performance OSN applications. Our strategy exploits lateral dimension control to engineer shorter and less tortuous transport pathways for solvent molecules. By using La3+ as a cross-linker and spacer for intercalation, the SFGO membrane selective layer was stabilized, and size-dependent ultrafast selective molecular transport was achieved. The methanol permeance was up to 2.9-fold higher than its large-flake GO (LFGO) counterpart, with high selectivity toward three organic dyes. More importantly, the SFGO-La3+ membrane demonstrated robust stability for at least 24 hours under hydrodynamic stresses that are representative of realistic OSN operating conditions. These desirable attributes stem from the La3+ cross-linking, which forms uniquely strong coordination bonds with oxygen-containing functional groups of SFGO. Other cations were found to be ineffective.
Project description:Graphene oxide (GO) membranes offer exceptional promise for certain aqueous separation challenges, such as desalination. Central to unlocking this promise and optimizing performance for a given separation is the establishment of a detailed molecular-level understanding of how the membrane's composition affects its structural and transport properties. This understanding is currently lacking, in part due to the fact that, until recently, molecular models with a realistic distribution of oxygen functionalities and interlayer flake structure were unavailable. To understand the effect of composition on the properties of GO membranes, models with water contents and oxygen contents, varying between 0% and 40% by weight, were prepared in this work using classical molecular dynamics simulations. The change in membrane interlayer distance distribution, water connectivity, and water diffusivity with water and oxygen content was quantified. Interlayer distance distribution analysis showed that the swelling of GO membranes could be controlled by separately tuning both the flake oxygen content and the membrane water content. Water-molecule cluster analysis showed that a continuous and fully connected network of water nanopores is not formed until the water content reaches ∼20%. The diffusivity of water in the membrane was also found to strongly depend on both the water and the oxygen content. These insights help understand the structure and transport properties of GO membranes with sub-nanometer interlayer distances and could be exploited to enhance the performance of GO membranes for aqueous separation applications. More broadly, the high-throughput in silico approach adopted could be applied to other nanomaterials with intrinsic non-stoichiometry and structural heterogeneity.
Project description:The Kubo formula for the electrical conductivity of per stratum of few-layer graphene, up to five, is analytically calculated in both simple and Bernal structures within the tight-binding Hamiltonian model and Green's function technique, compared with the single-layer one. The results show that, by increasing the layers of the graphene as well as the interlayer hopping of the nonhybridized p z orbitals, this conductivity decreases. Although the change in its magnitude varies less as the layer number increases to beyond two,distinguishably, at low temperatures, it exhibits a small deviation from linear behavior. Moreover, the simple bilayer graphene represents more conductivity with respect to the Bernal case.
Project description:Understanding the toxicity of nanomaterials is essential for the safe and sustainable development of new applications. This is particularly true for a nanomaterial as widely used as graphene oxide (GO), which is utilized as films for electronics, membranes for filtration, drug carriers and more. Despite this, the current literature presents conflicting results on the overall toxicity of GO. Here, the cytotoxicity of three sizes of commercially available GO was investigated on six cell lines, as values of NOAEL/LOAEL. The effectiveness of four viability assays was also evaluated. The overall toxicity of GO greatly varied between cell lines; the suspension cells showed a greater response to the GO treatment compared to the adherent cell lines. Time dependent cytotoxicity was also cell line dependent, with only one cell line demonstrating obvious dependence. The six cell lines were also tested to evaluate their response to varying GO flake sizes: the suspension/phagocytic cells showed little variation in viability, while a difference was observed for the adherent/non-phagocytic cell lines. By systematically studying the effect of dose, GO size and treatment time for the six cell lines by using commercially available GO samples, we eliminate many of the variables which may result in the conflicting reports on the cytotoxicity of GO in the literature.
Project description:Background and objectives: In the last few years, graphene oxide has attracted much attention in biomedical applications due to its unique physico-chemical properties and can be used as a carrier for both hydrophilic and/or hydrophobic biomolecules. The purpose of this paper was to synthesize graphene oxide and to obtain multifunctional platforms based on graphene oxide as a nanocarrier loaded with few biologically active substances with anticancer, antimicrobial or anti-inflammatory properties such as gallic acid, caffeic acid, limonene and nutmeg and cembra pine essential oils. Materials and Methods: Graphene oxide was obtained according to the method developed by Hummers and further loaded with biologically active agents. The obtained platforms were characterized using FTIR, HPLC, TGA, SEM, TEM and Raman spectroscopy. Results: Gallic acid released 80% within 10 days but all the other biologically active agents did not release because their affinity for the graphene oxide support was higher than that of the phosphate buffer solution. SEM characterization showed the formation of nanosheets and a slight increase in the degree of agglomeration of the particles. The ratio I2D/IG for all samples was between 0.18 for GO-cembra pine and 0.27 for GO-limonene, indicating that the GO materials were in the form of multilayers. The individual GO sheets were found to have less than 20 µm, the thickness of GO was estimated to be ~4 nm and an interlayer spacing of about 2.12 Å. Raman spectroscopy indicated that the bioactive substances were adsorbed on the surface and no degradation occurred during loading. Conclusions: These findings encourage this research to further explore, both in vitro and in vivo, the biological activities of bioactive agents for their use in medicine.
Project description:In this study, three-dimensional network architectures are constructed using nano-sized graphene oxide (nGO) as the building block. The cross-linking reaction of nGO is conducted in sub-micrometre water droplets in an emulsion system to control the size of the networks by restricting the reaction space. Two types of three-dimensional GO networks with different cross-linking lengths were constructed, and their methyl orange adsorption and release behaviours were investigated under external stimuli, such as thermal treatment, ultrasonic wave treatment and near-infrared light irradiation.
Project description:In this paper, the fabrication, surface characterisation and electrochemical properties of graphite flake (GFPE) and multilayer graphene (MLGPE) paste electrodes are described. The Raman investigations and scanning electron microscopy were used to analyze and compare structure of both carbon materials. The electroanalytical performance of both electrodes was examined and compared on the basis of the square-wave and cyclic voltammetric behavior of acetaminophen and model redox systems. Results of those studies revealed that GFPE has a larger electroactive surface area and better conductive properties, whilst MLGPE demonstrate better analytical characteristic in case of acetaminophen (AC) determination. AC determination was developed using square wave voltammetry (SWV) and square wave stripping voltammetry (SWSV). For both working electrodes, the process of accumulation enabled us to obtain an extended linear range and to lower the detection limit. In pharmaceutical formulations, AC was determined with good recovery.
Project description:Human-made natural-fiber-based filaments are attractive for natural fiber-reinforced polymer (NFRP) composites. However, the composites' moisture distribution is critical, and humidity monitoring in the NFRP composites is essential to secure stability and keep their life span. In this research, high strength and humidity sensing filament was developed by blending cellulose nanofiber (CNF) and graphene oxide (GO), wet-spinning, coagulating, and drying, which can overcome the heterogeneous mechanical properties between embedded-type humidity sensors and NFRP composites. The stabilized synthesis process of the CNF-GO hybrid filament demonstrated the maximum Young's modulus of 23.9 GPa and the maximum tensile strength of 439.4 MPa. Furthermore, the achieved properties were successfully transferred to a continuous fabrication process with an additional stretching process. Furthermore, its humidity sensing behavior is shown by resistivity changes in various temperature and humidity levels. Therefore, this hybrid filament has excellent potential for in-situ humidity monitoring by embedding in smart wearable devices, natural fiber-reinforced polymer composites, and environmental sensing devices.
Project description:Three-dimensional (3D) graphene composites have drawn increasing attention in energy storage/conversion applications due to their unique structures and properties. Herein, we synthesized 3D honeycomb-like Ni3S2@graphene oxide composite (3D honeycomb-like Ni3S2@GO) by a one-pot hydrothermal method. We found that positive charges of Ni2+ and negative charges of NO3- in Ni(NO3)2 induced a transformation of graphene oxide with smooth surface into graphene oxide with wrinkled surface (w-GO). The w-GO in the mixing solution of Ni(NO3)2/thioacetamide/H2O evolved into 3D honeycomb-like Ni3S2@GO in solvothermal process. The GO effectively inhibited the aggregation of Ni3S2 nanoparticles. Photoelectrochemical cells based on 3D Ni3S2@GO synthesized at 60?mM?l-1 Ni(NO3)2 exhibited the best energy conversion efficiency. 3D Ni3S2@GO had smaller charge transfer resistance and larger exchange current density than pure Ni3S2 for iodine reduction reaction. The cyclic stability of 3D honeycomb-like Ni3S2@GO was good in the iodine electrolyte. Results are of great interest for fundamental research and practical applications of 3D GO and its composites in solar water-splitting, artificial photoelectrochemical cells, electrocatalysts and Li-S or Na-S batteries.
Project description:This study aimed to determine the in vitro cytotoxicity and mutagenicity of graphene flake (GF) and aqueous graphene paste (AGP) in order to evaluate their potential for application as biomaterials. Furthermore, their antitumor activity against adherent and suspended cells, namely, human breast adenocarcinoma cells (MDA-MB-231), and human monocytes from histiocytic lymphoma (U-937), was investigated. The results demonstrated that GF reduced the viability and proliferation of NIH3T3 immortalized murine fibroblasts for concentrations >0.8 µg/mL and incubation times of 48 and 72 h. AGP showed no toxic effects in any of the tested concentrations and incubation times. The same results were obtained for MDA-MB-231 cells. The viability of the U-937 cells was not affected by either GF or AGP. The Ames test showed that GF and AGP were not genotoxic against Salmonella typhimurium strains TA98 and TA100, with and without metabolic activation. The present study demonstrated good in vitro cellular compatibility of GF and AGP and. Among these, AGP was the best material as it did not interfere, at any of the tested concentrations, with cell viability and proliferation for up to 72 h of incubation. In any case, neither material induced alterations to cell morphology and were not mutagenic.