Unknown

Dataset Information

0

Circ_0067680 expedites the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells through miR-4429/CTNNB1/Wnt/β-catenin pathway.


ABSTRACT:

Background

Human bone marrow-derived mesenchymal stem cells (hBMSCs) are the primary source of osteoblasts in vivo. Emerging literatures have unveiled that circular RNAs (circRNAs) are actively drawn in the osteogenic differentiation of mesenchymal stem cells (MSCs). This research mainly illuminated the role of circ_0067680 as well as its regulatory mechanism in osteoblastic differentiation.

Methods

In this study, RT-qPCR was to measure the expression of circ_0067680. Functional assays were implemented to assess the role of circ_0067680 in osteogenic differentiation. Besides, RNA pull down, RIP and luciferase reporter assays were carried out to investigate the regulatory mechanism of circ_0067680.

Results

Circ_0067680, which derived from its host gene divergent protein kinase domain 2A (C3orf58), was up-regulated during osteogenic differentiation of hBMSCs. Besides, circ_0067680 deficiency impeded the osteoblastic differentiation of hBMSCs. Moreover, circ_0067680 served as a ceRNA via sequestering miR-4429 to regulate the expression of catenin beta 1 (CTNNB1), thereby activating the Wnt/β-catenin signaling pathway.

Conclusion

Circ_0067680 accelerated hBMSCs osteogenic differentiation by the miR-4429/CTNNB1/Wnt/β-catenin signaling, which might be used as a potential biomarker for osteoblastic differentiation.

SUBMITTER: Huang Y 

PROVIDER: S-EPMC8515698 | biostudies-literature | 2021 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Circ_0067680 expedites the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells through miR-4429/CTNNB1/Wnt/β-catenin pathway.

Huang Yuansheng Y   Wan Su S   Yang Min M  

Biology direct 20211014 1


<h4>Background</h4>Human bone marrow-derived mesenchymal stem cells (hBMSCs) are the primary source of osteoblasts in vivo. Emerging literatures have unveiled that circular RNAs (circRNAs) are actively drawn in the osteogenic differentiation of mesenchymal stem cells (MSCs). This research mainly illuminated the role of circ_0067680 as well as its regulatory mechanism in osteoblastic differentiation.<h4>Methods</h4>In this study, RT-qPCR was to measure the expression of circ_0067680. Functional a  ...[more]

Similar Datasets

| S-EPMC8183571 | biostudies-literature
| S-EPMC10599756 | biostudies-literature
| S-EPMC6341609 | biostudies-literature
| S-EPMC6593611 | biostudies-literature
| S-EPMC8485455 | biostudies-literature
| S-EPMC11406849 | biostudies-literature
| S-EPMC4899801 | biostudies-literature
| S-EPMC8499504 | biostudies-literature
| S-EPMC9396013 | biostudies-literature
| S-EPMC7988169 | biostudies-literature