Unknown

Dataset Information

0

TRPM7 is critical for short-term synaptic depression by regulating synaptic vesicle endocytosis.


ABSTRACT: Transient receptor potential melastatin 7 (TRPM7) contributes to a variety of physiological and pathological processes in many tissues and cells. With a widespread distribution in the nervous system, TRPM7 is involved in animal behaviors and neuronal death induced by ischemia. However, the physiological role of TRPM7 in central nervous system (CNS) neuron remains unclear. Here, we identify endocytic defects in neuroendocrine cells and neurons from TRPM7 knockout (KO) mice, indicating a role of TRPM7 in synaptic vesicle endocytosis. Our experiments further pinpoint the importance of TRPM7 as an ion channel in synaptic vesicle endocytosis. Ca2+ imaging detects a defect in presynaptic Ca2+ dynamics in TRPM7 KO neuron, suggesting an importance of Ca2+ influx via TRPM7 in synaptic vesicle endocytosis. Moreover, the short-term depression is enhanced in both excitatory and inhibitory synaptic transmissions from TRPM7 KO mice. Taken together, our data suggests that Ca2+ influx via TRPM7 may be critical for short-term plasticity of synaptic strength by regulating synaptic vesicle endocytosis in neurons.

SUBMITTER: Jiang ZJ 

PROVIDER: S-EPMC8516418 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6608302 | biostudies-literature
| S-EPMC3591783 | biostudies-literature
| S-EPMC2359800 | biostudies-literature
| S-EPMC3190241 | biostudies-literature
| S-EPMC8684713 | biostudies-literature
| S-EPMC4670672 | biostudies-literature
| S-EPMC1693854 | biostudies-literature
| S-EPMC10199930 | biostudies-literature
| S-EPMC2749961 | biostudies-literature
| S-EPMC7549837 | biostudies-literature