Project description:BACKGROUND:The loss of ovarian function in women, referred to as premature ovarian insufficiency (POI), is associated with a series of concomitant diseases. POI is genetically heterogeneous, and in most cases, the etiology is unknown. METHODS:Whole-exome sequencing (WES) was performed on DNA samples obtained from patients with POI, and Sanger sequencing was used to validate the detected potentially pathogenic variants. An in silico analysis was carried out to predict the pathogenicity of the variants. RESULTS:We recruited 24 patients with POI and identified variants in POI-related genes in 14 patients, including bi-allelic mutations in DNAH6, HFM1, EIF2B2, BNC, and LRPPRC and heterozygous variants in BNC1, EIF2B4, FOXL2, MCM9, FANCA, ATM, EIF2B3, and GHR. No variants in the above genes were detected in the WES data obtained from 29 women in a control group without POI. Determining a clear genetic etiology could significantly increase patient compliance with appropriate intervention strategies. CONCLUSIONS:Our study confirmed that POI is a genetically heterogeneous condition and that whole-exome sequencing is a powerful tool for determining its genetic etiology. The results of this study will aid researchers and clinicians in genetic counseling and suggests the potential of WES for the detection of POI and thus early interventions for patients with POI.
Project description:PURPOSE:To investigate the potential genetic etiology of premature ovarian insufficiency (POI). METHODS:Whole-exome sequencing (WES) was done on DNA samples from women diagnosed with POI. Mutations identified were analyzed by in silico tools and were annotated according to the guidelines of the American College of Medical Genetics and Genomics. Plausible variants were confirmed by Sanger sequencing. RESULTS:Four of the 33 individuals (12%) carried pathogenic or likely pathogenic variants, and 6 individuals carried variants of unknown significance. The genes identified with pathogenic or likely pathogenic variants included PMM2, MCM9, and PSMC3IP. CONCLUSIONS:WES is an efficient tool for identifying gene variants in POI women; however, interpretation of variants is hampered by few exome studies involving ovarian disorders and the need for trio sequencing to determine inheritance and to detect de novo variants.
Project description:Adrenal insufficiency is a rare, but potentially fatal medical condition. In children, the cause is most commonly congenital and in recent years a growing number of causative gene mutations have been identified resulting in a myriad of syndromes that share adrenal insufficiency as one of the main characteristics. The evolution of adrenal insufficiency is dependent on the variant and the particular gene affected, meaning that rapid and accurate diagnosis is imperative for effective treatment of the patient. Common practice is for candidate genes to be sequenced individually, which is a time-consuming process and complicated by overlapping clinical phenotypes. However, with the availability, and increasing cost effectiveness of whole-exome sequencing, there is the potential for this to become a powerful diagnostic tool. Here, we report the results of whole-exome sequencing of 43 patients referred to us with a diagnosis of familial glucocorticoid deficiency (FGD) who were mutation negative for MC2R, MRAP, and STAR the most commonly mutated genes in FGD. WES provided a rapid genetic diagnosis in 17/43 sequenced patients, for the remaining 60% the gene defect may be within intronic/regulatory regions not covered by WES or may be in gene(s) representing novel etiologies. The diagnosis of isolated or familial glucocorticoid deficiency was only confirmed in 3 of the 17 patients, other genetic diagnoses were adrenal hypo- and hyperplasia, Triple A, and autoimmune polyendocrinopathy syndrome type I, emphasizing both the difficulty of phenotypically distinguishing between disorders of PAI and the utility of WES as a tool to achieve this.
Project description:ContextPrimary ovarian insufficiency (POI) is a cause of female infertility. However, the genetic etiology of this disorder remains unknown in most patients with POI.ObjectiveTo investigate the genetic etiology of idiopathic POI.Patients and methodsWe performed whole-exome sequencing of 11 families with idiopathic POI. To gain insights into the potential mechanisms associated with this mutation, we generated two mouse lines via clustered regularly interspaced short palindromic repeats/Cas9 technology.ResultsA pathogenic homozygous missense mutation (c.149A>G; p.Asp50Gly) in the POLR3H gene in two unrelated families was identified. Pathogenic mutations in this subunit have not been associated with human disorders. Loss-of-function Polr3h mutation in mice caused early embryonic lethality. Mice with homozygous point mutation (Polr3hD50G) were viable but showed delayed pubertal development, characterized by late first estrus or preputial separation. The Polr3hD50G female and male mice showed decreased fertility later in life, associated with small litter size and increased time to pregnancy or to impregnate a female. Polr3hD50G mice displayed decreased expression of ovarian Foxo3a and lower numbers of primary follicles.ConclusionOur manuscript provides a case of POI caused by missense mutation in POLR3H, expanding the knowledge of molecular pathways of the ovarian function and human infertility. Screening of the POLR3H gene may elucidate POI cases without previously identified genetic causes, supporting approaches of genetic counseling.
Project description:Despite the identification of several ovarian cancer (OC) predisposition genes, a large proportion of familial OC risk remains unexplained. We adopted a two-stage design to identify new OC predisposition genes. We first carried out a large germline whole-exome sequencing study on 158 patients from 140 families with significant OC history, but without evidence of genetic predisposition due to BRCA1/2. We then evaluated the potential candidate genes in a large case-control association study involving 381 OC cases in the Cancer Genome Atlas project and 27,173 population controls from the Exome Aggregation Consortium. Two new putative OC risk genes were identified, namely, ANKRD11, a putative tumor suppressor, and POLE, an enzyme involved in DNA repair and replication. These two genes likely confer moderate OC risk. We performed in vitro experiments and showed an ANKRD11 mutation identified in our patients markedly lowered the protein expression by compromising protein stability. Upon future validation and functional characterization, these genes may shed light on cancer etiology along with improving ascertainment power and preventive care of individuals at high risk of OC.
Project description:Genomic technologies, such as whole-exome sequencing, are a powerful tool in genetic research. Such testing yields a great deal of incidental medical information, or medical information not related to the primary research target. We describe the management of incidental medical information derived from whole-exome sequencing in the research context. We performed whole-exome sequencing on a monozygotic twin pair in which only 1 child was affected with congenital anomalies and applied an institutional review board-approved algorithm to determine what genetic information would be returned. Whole-exome sequencing identified 79525 genetic variants in the twins. Here, we focus on novel variants. After filtering artifacts and excluding known single nucleotide polymorphisms and variants not predicted to be pathogenic, the twins had 32 novel variants in 32 genes that were felt to be likely to be associated with human disease. Eighteen of these novel variants were associated with recessive disease and 18 were associated with dominantly manifesting conditions (variants in some genes were potentially associated with both recessive and dominant conditions), but only 1 variant ultimately met our institutional review board-approved criteria for return of information to the research participants.
Project description:We propose a targeted re-sequencing simulator Wessim that generates synthetic exome sequencing reads from a given sample genome. Wessim emulates conventional exome capture technologies, including Agilent's SureSelect and NimbleGen's SeqCap, to generate DNA fragments from genomic target regions. The target regions can be either specified by genomic coordinates or inferred from in silico probe hybridization. Coupled with existing next-generation sequencing simulators, Wessim generates a realistic artificial exome sequencing data, which is essential for developing and evaluating exome-targeted variant callers.Source code and the packaged version of Wessim with manuals are available at http://sak042.github.com/Wessim/.Supplementary data are available at Bioinformatics online.
Project description:Primary ovarian insufficiency (POI) is one of the major causes of female infertility associated with the premature loss of ovarian function in about 3.7% of women before the age of 40. This disorder is highly heterogeneous and can manifest with a wide range of clinical phenotypes, ranging from ovarian dysgenesis and primary amenorrhea to post-pubertal secondary amenorrhea, with elevated serum gonadotropins and hypoestrogenism. The ovarian defect still remains idiopathic in some cases; however, a strong genetic component has been demonstrated by the next-generation sequencing (NGS) approach of familiar and sporadic POI cases. As recent evidence suggested an oligogenic architecture for POI, we developed a target NGS panel with 295 genes including known candidates and novel genetic determinants potentially involved in POI pathogenesis. Sixty-four patients with early onset POI (range: 10-25 years) of our cohort have been screened with 90% of target coverage at 50×. Here, we report 48 analyzed patients with at least one genetic variant (75%) in the selected candidate genes. In particular, we found the following: 11/64 patients (17%) with two variants, 9/64 (14%) with three variants, 9/64 (14%) with four variants, 3/64 (5%) with five variants, and 2/64 (3%) with six variants. The most severe phenotypes were associated with either the major number of variations or a worse prediction in pathogenicity of variants. Bioinformatic gene ontology analysis identified the following major pathways likely affected by gene variants: 1) cell cycle, meiosis, and DNA repair; 2) extracellular matrix remodeling; 3) reproduction; 4) cell metabolism; 5) cell proliferation; 6) calcium homeostasis; 7) NOTCH signaling; 8) signal transduction; 9) WNT signaling; 10) cell death; and 11) ubiquitin modifications. Consistently, the identified pathways have been described in other studies dissecting the mechanisms of folliculogenesis in animal models of altered fertility. In conclusion, our results contribute to define POI as an oligogenic disease and suggest novel candidates to be investigated in patients with POI.
Project description:BACKGROUND:Interrogation of whole exome and targeted sequencing NGS data is rapidly becoming a preferred approach for the exploration of large cohorts in the research setting and importantly in the context of precision medicine. Single-base and genomic region level data retrieval and processing still constitute major bottlenecks in NGS data analysis. Fast and scalable tools are hence needed. RESULTS:PaCBAM is a command line tool written in C and designed for the characterization of genomic regions and single nucleotide positions from whole exome and targeted sequencing data. PaCBAM computes depth of coverage and allele-specific pileup statistics, implements a fast and scalable multi-core computational engine, introduces an innovative and efficient on-the-fly read duplicates filtering strategy and provides comprehensive text output files and visual reports. We demonstrate that PaCBAM exploits parallel computation resources better than existing tools, resulting in important reductions of processing time and memory usage, hence enabling an efficient and fast exploration of large datasets. CONCLUSIONS:PaCBAM is a fast and scalable tool designed to process genomic regions from NGS data files and generate coverage and pileup comprehensive statistics for downstream analysis. The tool can be easily integrated in NGS processing pipelines and is available from Bitbucket and Docker/Singularity hubs.
Project description:Primary ciliary dyskinesia (PCD) is an autosomal-recessive disorder resulting from loss of normal ciliary function. Symptoms include neonatal respiratory distress, chronic sinusitis, bronchiectasis, situs inversus, and infertility. Clinical features may be subtle and highly variable, making the diagnosis of PCD challenging. The diagnosis can be confirmed with ciliary ultrastructure analysis and/or molecular genetic testing of 32 PCD-associated genes. However, because of this genetic heterogeneity, comprehensive molecular genetic testing is not considered the standard of care, and the most efficient molecular approach has yet to be elucidated. Here, we propose a cost-effective and time-efficient molecular genetic algorithm to solve cases of PCD. We conducted targeted copy number variation (CNV) analysis and/or whole-exome sequencing on 20 families (22 patients) from a subset of 45 families (52 patients) with a clinical diagnosis of PCD who did not have a molecular genetic diagnosis after Sanger sequencing of 12 PCD-associated genes. This combined molecular genetic approach led to the identification of 4 of 20 (20%) families with clinically significant CNVs and 7 of 20 (35%) families with biallelic pathogenic mutations in recently identified PCD genes, resulting in an increased molecular genetic diagnostic rate of 55% (11/20). In patients with a clinical diagnosis of PCD, whole-exome sequencing followed by targeted CNV analysis results in an overall molecular genetic yield of 76% (34/45).