Different characteristics of microbial diversity and special functional microbes in rainwater and topsoil before and after 2019 new coronavirus epidemic in Inner Mongolia Grassland.
Ontology highlight
ABSTRACT: Grassland ecosystems are vital terrestrial ecosystems. As areas sensitive to climate change, they are critical for assessing the effects of global climate change. In China, grasslands account for over 40% of the land area. There is currently limited information on microbial diversity evolution in different grassland areas, particularly microorganisms with ice nucleation activity (INA) and their potential resources with potential influence to regulate regional precipitation and climate. We used Illumina MiSeq to sequence the 16S rRNA V3-V4 hypervariable region and performed a simple droplet freezing experiment to determine the variation in the grassland microbial community species composition and community structure. Rainwater and topsoil samples from the Hulunbuir Grassland in Inner Mongolia collected over three years were characterized. The dominant bacterial genus in the rainwater was Massilia, and the dominant fungus was Cladosporium. Additionally, the dominant bacteria in the soil were Sphingomonas, and the dominant fungus was Gibberella. There were differences in the microbial communities before and after the coronavirus disease epidemic. Pathogenic microorganisms exhibited inconsistent responses to environmental changes. The low relative abundance of known high-INA microorganisms and the higher freezing temperature indicated that unknown high-efficiency biological ice nucleating particles may be present. We found significant differences in species diversity and richness between the rainwater and soil populations in grassland areas by analyzing the sample community structures. Our research results revealed the species composition and structure of the microbiota in grassland ecosystems in China, indicating that environmental media and human activities may affect the microbiota in the grassland area and indicating underlying microorganisms with high INA.
SUBMITTER: Zhang Y
PROVIDER: S-EPMC8527739 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA