Unknown

Dataset Information

0

Enabling three-dimensional porous architectures via carbonyl functionalization and molecular-specific organic-SERS platforms.


ABSTRACT: Molecular engineering via functionalization has been a great tool to tune noncovalent intermolecular interactions. Herein, we demonstrate three-dimensional highly crystalline nanostructured D(C7CO)-BTBT films via carbonyl-functionalization of a fused thienoacene π-system, and strong Raman signal enhancements in Surface-Enhanced Raman Spectroscopy (SERS) are realized. The small molecule could be prepared on the gram scale with a facile synthesis-purification. In the engineered films, polar functionalization induces favorable out-of-plane crystal growth via zigzag motif of dipolar C = O···C = O interactions and hydrogen bonds, and strengthens π-interactions. A unique two-stage film growth behavior is identified with an edge-on-to-face-on molecular orientation transition driven by hydrophobicity. The analysis of the electronic structures and the ratio of the anti-Stokes/Stokes SERS signals suggests that the π-extended/stabilized LUMOs with varied crystalline face-on orientations provide the key properties in the chemical enhancement mechanism. A molecule-specific Raman signal enhancement is also demonstrated on a high-LUMO organic platform. Our results demonstrate a promising guidance towards realizing low-cost SERS-active semiconducting materials, increasing structural versatility of organic-SERS platforms, and advancing molecule-specific sensing via molecular engineering.

SUBMITTER: Deneme I 

PROVIDER: S-EPMC8531383 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC5027280 | biostudies-literature
| S-EPMC5693943 | biostudies-literature
| S-EPMC8023708 | biostudies-literature
| S-EPMC5577517 | biostudies-literature
| S-EPMC10498678 | biostudies-literature
| S-EPMC9418486 | biostudies-literature
| S-EPMC6941879 | biostudies-literature
| S-EPMC7540396 | biostudies-literature
2024-03-07 | GSE220140 | GEO
| S-EPMC7978426 | biostudies-literature