Interplay between epigallocatechin-3-gallate and ionic strength during amyloid aggregation
Ontology highlight
ABSTRACT: The formation and accumulation of protein amyloid aggregates is linked with multiple amyloidoses, including neurodegenerative Alzheimer’s or Parkinson’s disease. The mechanism of such fibril formation is impacted by various environmental conditions, which greatly complicates the search for potential anti-amyloid compounds. One of these factors is solution ionic strength, which varies between different aggregation protocols during in vitro drug screenings. In this work, we examine the interplay between ionic strength and a well-known protein aggregation inhibitor—epigallocatechin-3-gallate. We show that changes in solution ionic strength have a major impact on the compound’s inhibitory effect, reflected in both aggregation times and final fibril structure. We also observe that this effect is unique to different amyloid-forming proteins, such as insulin, alpha-synuclein and amyloid-beta.
SUBMITTER: Ziaunys M
PROVIDER: S-EPMC8544251 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA