Project description:Pnictogen-bond donors are attractive for use in catalysis because of deep σ holes, high multivalency, rich hypervalency, and chiral binding pockets. We here report natural product inspired epoxide-opening polyether cyclizations catalyzed by fluoroarylated Sb(v) > Sb(iii) > Bi > Sn > Ge. The distinctive characteristic found for pnictogen-bonding catalysis is the breaking of the Baldwin rules, that is selective endo cyclization into the trans-fused ladder oligomers known from the brevetoxins. Moreover, tris(3,4,5-trifluorophenyl)stibines and their hypervalent stiborane catecholates afford different anti-Baldwin stereoselectivity. Lewis (SbCl3), Brønsted (AcOH) and π acids fail to provide similar access to these forbidden rings. Like hydrogen-bonding catalysis differs from Brønsted acid catalysis, pnictogen-bonding catalysis thus emerges as the supramolecular counterpart of covalent Lewis acid catalysis.
Project description:Our growing interest in the design of pnictogen-based strategies for anion transport has prompted an investigation into the properties of three simple triarylcatecholatostiboranes (1-3) of the general formula (o-C6Cl4O2)SbAr3 with Ar = Ph (1), o-tolyl (2), and o-xylyl (3) for the complexation and transport of hydroxide across phospholipid bilayers. A modified hydroxypyrene-1,3,6-trisulfonic acid (HPTS) assay carried out in artificial liposomes shows that 1 and 2 are potent hydroxide transporters while 3 is inactive. These results indicate that the steric hindrance imposed by the three o-xylyl groups prevents access by the hydroxide anion to the antimony center. Supporting this interpretation, 1 and 2 quickly react with TBAOH·30 H2O ([TBA]+ = [nBu4N]+) to form the corresponding hydroxoantimonate salts [nBu4N][1-OH] and [nBu4N][2-OH], whereas 3 resists hydroxide coordination and remains unperturbed. Moreover, the hydroxide transport activities of 1 and 2 are correlated to the +V oxidation state of the antimony atom as the parent trivalent stibines show no hydroxide transport activity.
Project description:Halogen- and chalcogen-based ?-hole interactions have recently received increased interest in non-covalent organocatalysis. However, the closely related pnictogen bonds have been neglected. In this study, we introduce conceptually simple, neutral, and monodentate pnictogen-bonding catalysts. Solution and in?silico binding studies, together with high catalytic activity in chloride abstraction reactions, yield compelling evidence for operational pnictogen bonds. The depth of the ??holes is easily varied with different substituents. Comparison with homologous halogen- and chalcogen-bonding catalysts shows an increase in activity from main group?VII to V and from row?3 to 5 in the periodic table. Pnictogen bonds from antimony thus emerged as by far the best among the elements covered, a finding that provides most intriguing perspectives for future applications in catalysis and beyond.
Project description:Our interest in the chemistry of tunable chalcogen and pnictogen bond donors as Lewis acidic platforms for the complexation and transport of anions has led us to investigate examples of such compounds that can be activated by redox events. Here, we describe the synthesis of [o-MePhS(C6H4)SbPh3]2+ ([3]2+) and [o-MePhS(C6H4)Sb(p-Tol)3]2+ ([4]2+), two dicationic stibonium/sulfonium bifunctional Lewis acids which were obtained by methylation of the phenylthioether derivatives [o-PhS(C6H4)SbPh3]+ ([1]+) and [o-PhS(C6H4)Sb(p-Tol)3]+ ([2]+), respectively. An evaluation of the chloride anion transport properties of these derivatives using chloride-loaded POPC unilamellar vesicles shows that the activity of the monocations [1]+ and [2]+ greatly exceeds that of the dications [3]2+ and [4]2+, a phenomenon that we assign to the higher lipophilicity of the monocationic compounds. Harnessing this large transport activity differential, we show that [4]2+ can be used as a prechloridophore that is readily activated by reduction of the sulfonium moiety. Indeed, [4]2+ reacts with GSH to afford [2]+ as an active transporter. This activation, which has been monitored in aqueous solution, can also be carried out in situ, in the presence of the chloride-loaded POPC unilamellar vesicles.
Project description:Asymmetric catalytic azidation has increased in importance to access enantioenriched nitrogen containing molecules, but methods that employ inexpensive sodium azide remain scarce. This encouraged us to undertake a detailed study on the application of hydrogen bonding phase-transfer catalysis (HB-PTC) to enantioselective azidation with sodium azide. So far, this phase-transfer manifold has been applied exclusively to insoluble metal alkali fluorides for carbon-fluorine bond formation. Herein, we disclose the asymmetric ring opening of meso aziridinium electrophiles derived from β-chloroamines with sodium azide in the presence of a chiral bisurea catalyst. The structure of novel hydrogen bonded azide complexes was analyzed computationally, in the solid state by X-ray diffraction, and in solution phase by 1H and 14N/15N NMR spectroscopy. With N-isopropylated BINAM-derived bisurea, end-on binding of azide in a tripodal fashion to all three NH bonds is energetically favorable, an arrangement reminiscent of the corresponding dynamically more rigid trifurcated hydrogen-bonded fluoride complex. Computational analysis informs that the most stable transition state leading to the major enantiomer displays attack from the hydrogen-bonded end of the azide anion. All three H-bonds are retained in the transition state; however, as seen in asymmetric HB-PTC fluorination, the H-bond between the nucleophile and the monodentate urea lengthens most noticeably along the reaction coordinate. Kinetic studies corroborate with the turnover rate limiting event resulting in a chiral ion pair containing an aziridinium cation and a catalyst-bound azide anion, along with catalyst inhibition incurred by accumulation of NaCl. This study demonstrates that HB-PTC can serve as an activation mode for inorganic salts other than metal alkali fluorides for applications in asymmetric synthesis.
Project description:Polycyclic polyether natural products have fascinated chemists and biologists alike owing to their useful biological activity, highly complex structure and intriguing biosynthetic mechanisms. Following the original proposal for the polyepoxide origin of lasalocid and isolasalocid and the experimental determination of the origins of the oxygen and carbon atoms of both lasalocid and monensin, a unified stereochemical model for the biosynthesis of polyether ionophore antibiotics was proposed. The model was based on a cascade of nucleophilic ring closures of postulated polyepoxide substrates generated by stereospecific oxidation of all-trans polyene polyketide intermediates. Shortly thereafter, a related model was proposed for the biogenesis of marine ladder toxins, involving a series of nominally disfavoured anti-Baldwin, endo-tet epoxide-ring-opening reactions. Recently, we identified Lsd19 from the Streptomyces lasaliensis gene cluster as the epoxide hydrolase responsible for the epoxide-opening cyclization of bisepoxyprelasalocid A to form lasalocid A. Here we report the X-ray crystal structure of Lsd19 in complex with its substrate and product analogue to provide the first atomic structure-to our knowledge-of a natural enzyme capable of catalysing the disfavoured epoxide-opening cyclic ether formation. On the basis of our structural and computational studies, we propose a general mechanism for the enzymatic catalysis of polyether natural product biosynthesis.
Project description:We report the results of a computational investigation into fluoride binding by a series of pentavalent pnictogen Lewis acids: pnictogen pentahalides (PnX5), tetraphenyl pnictogeniums (PnPh4+), and triphenyl pnictogen tetrachlorocatecholates (PnPh3Cat). Activation strain and energy decomposition analyses of the Lewis adducts not only clearly delineate the electrostatic and orbital contributions to these acid-base interactions but also highlight the importance of Pauli repulsion and molecular flexibility in determining relative Lewis acidity among the pnictogens.
Project description:A novel strategy for the synthesis of partially saturated acene derivatives has been developed based on a Au(I) -catalyzed cyclization of 1,7-enynes. This method provides straightforward access to stable polycyclic products featuring the backbone of the acene series, up to nonacene.
Project description:A new air and moisture stable antimony thiolate compound has been prepared that spontaneously forms stable hollow vesicles. Structural data reveals that pnictogen bonding drives the self-assembly of these molecules into a reversed bilayer. The ability to make these hollow, spherical, and chemically and temporally stable vesicles that can be broken and reformed by sonication allows these systems to be used for encapsulation and compartmentalisation in organic media. This was demonstrated through the encapsulation and characterization of several small organic reporter molecules.
Project description:Synthetic anion transporters show much promise as potential anti-cancer agents and therapeutics for diseases associated with mis-regulation of protein anion channels. In such applications high activity and anion selectivity are crucial to overcome competing proton or hydroxide transport which dissipates cellular pH gradients. Here, highly active bidentate halogen bonding and chalcogen bonding anion carriers based on electron deficient iodo- and telluromethyl-triazole derivatives are reported. Anion transport experiments in lipid bilayer vesicles reveal record nanomolar chloride transport activity for the bidentate halogen bonding anion carrier, and remarkably high chloride over proton/hydroxide selectivity for the chalcogen bonding anionophore. Computational studies provide further insight into the role of sigma-hole mediated anion recognition and desolvation at the membrane interface. Comparison with hydrogen bonding analogues demonstrates the importance of employing sigma-hole donor motifs in synthetic anionophores for achieving both high transport activity and selectivity.