Unknown

Dataset Information

0

Automated segmentation by deep learning of loose connective tissue fibers to define safe dissection planes in robot-assisted gastrectomy.


ABSTRACT: The prediction of anatomical structures within the surgical field by artificial intelligence (AI) is expected to support surgeons' experience and cognitive skills. We aimed to develop a deep-learning model to automatically segment loose connective tissue fibers (LCTFs) that define a safe dissection plane. The annotation was performed on video frames capturing a robot-assisted gastrectomy performed by trained surgeons. A deep-learning model based on U-net was developed to output segmentation results. Twenty randomly sampled frames were provided to evaluate model performance by comparing Recall and F1/Dice scores with a ground truth and with a two-item questionnaire on sensitivity and misrecognition that was completed by 20 surgeons. The model produced high Recall scores (mean 0.606, maximum 0.861). Mean F1/Dice scores reached 0.549 (range 0.335-0.691), showing acceptable spatial overlap of the objects. Surgeon evaluators gave a mean sensitivity score of 3.52 (with 88.0% assigning the highest score of 4; range 2.45-3.95). The mean misrecognition score was a low 0.14 (range 0-0.7), indicating very few acknowledged over-detection failures. Thus, AI can be trained to predict fine, difficult-to-discern anatomical structures at a level convincing to expert surgeons. This technology may help reduce adverse events by determining safe dissection planes.

SUBMITTER: Kumazu Y 

PROVIDER: S-EPMC8551298 | biostudies-literature | 2021 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Automated segmentation by deep learning of loose connective tissue fibers to define safe dissection planes in robot-assisted gastrectomy.

Kumazu Yuta Y   Kobayashi Nao N   Kitamura Naoki N   Rayan Elleuch E   Neculoiu Paul P   Misumi Toshihiro T   Hojo Yudai Y   Nakamura Tatsuro T   Kumamoto Tsutomu T   Kurahashi Yasunori Y   Ishida Yoshinori Y   Masuda Munetaka M   Shinohara Hisashi H  

Scientific reports 20211027 1


The prediction of anatomical structures within the surgical field by artificial intelligence (AI) is expected to support surgeons' experience and cognitive skills. We aimed to develop a deep-learning model to automatically segment loose connective tissue fibers (LCTFs) that define a safe dissection plane. The annotation was performed on video frames capturing a robot-assisted gastrectomy performed by trained surgeons. A deep-learning model based on U-net was developed to output segmentation resu  ...[more]

Similar Datasets

| S-EPMC8606878 | biostudies-literature
| S-EPMC11857155 | biostudies-literature
| S-EPMC11695969 | biostudies-literature
| S-EPMC6266199 | biostudies-literature
| S-EPMC9633928 | biostudies-literature
| S-EPMC4932206 | biostudies-literature
| S-EPMC6310459 | biostudies-literature
| S-EPMC4248452 | biostudies-literature
2011-05-08 | GSE11371 | GEO
2011-05-08 | E-GEOD-11371 | biostudies-arrayexpress