Fabrication of g-C3N4 Nanosheets Anchored With Controllable CdS Nanoparticles for Enhanced Visible-Light Photocatalytic Performance
Ontology highlight
ABSTRACT: Herein, g-C3N4/CdS hybrids with controllable CdS nanoparticles anchoring on g-C3N4 nanosheets were constructed. The effects of CdS nanoparticles on photocatalytic H2 production and organic molecule degradation for g-C3N4/CdS hybrids were investigated. The maximum rate of H2 production for g-C3N4/CdS sample was 1,070.9 μmol g−1 h−1, which was about four times higher than that of the individual g-C3N4 nanosheet sample. The enhanced photocatalytic performance for prepared hybrids could be mainly attributed to the following causes: the formed heterojunctions can contribute to the light absorption and separation of photogenerated electrons and holes, the two-dimensional layered structure facilitates the transmission and transfer of electrons, and high specific surface area could provide more exposed active sites.
SUBMITTER: Wang M
PROVIDER: S-EPMC8553295 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA