Project description:IntroductionDue to its peculiar anatomy and physiology, the pericardial fluid is a biological matrix of particular interest in the forensic field. Despite this, the available literature has mainly focused on post-mortem biochemistry and forensic toxicology, while to the best of authors' knowledge post-mortem metabolomics has never been applied. Similarly, estimation of the time since death or post-mortem interval based on pericardial fluids has still rarely been attempted.ObjectivesWe applied a metabolomic approach based on 1H nuclear magnetic resonance spectroscopy to ascertain the feasibility of monitoring post-mortem metabolite changes on human pericardial fluids with the aim of building a multivariate regression model for post-mortem interval estimation.MethodsPericardial fluid samples were collected in 24 consecutive judicial autopsies, in a time frame ranging from 16 to 170 h after death. The only exclusion criterion was the quantitative and/or qualitative alteration of the sample. Two different extraction protocols were applied for low molecular weight metabolites selection, namely ultrafiltration and liquid-liquid extraction. Our metabolomic approach was based on the use of 1H nuclear magnetic resonance and multivariate statistical data analysis.ResultsThe pericardial fluid samples treated with the two experimental protocols did not show significant differences in the distribution of the metabolites detected. A post-mortem interval estimation model based on 18 pericardial fluid samples was validated with an independent set of 6 samples, giving a prediction error of 33-34 h depending on the experimental protocol used. By narrowing the window to post-mortem intervals below 100 h, the prediction power of the model was significantly improved with an error of 13-15 h depending on the extraction protocol. Choline, glycine, ethanolamine, and hypoxanthine were the most relevant metabolites in the prediction model.ConclusionThe present study, although preliminary, shows that PF samples collected from a real forensic scenario represent a biofluid of interest for post-mortem metabolomics, with particular regard to the estimation of the time since death.
Project description:Pericardial sac surrounding the heart contains pericardial fluid (PF), which is rich in exosomes. PF exosomes increase angiogenesis in hypoxic endothelial cells and in animal model of hindlimb ischemia by passing the proangiogenic miRNAs to recipient cells. However, under pathological conditions such as diabetes, exosome cargo composition changes and harmful miRNAs can be transferred to the recipient cells and induce more deleterious effects in target tissues. In order to check cargo composition of different PF exosomes, we used PF exosomes from non-diabetic aortic valve replacement (AVR), mitral valve replacement (MVR), coronary artery bypass grafting (CABG) patients and CABG patients with diabetes.
Project description:The pericardial fluid (PF) surrounds the heart and it is contained in the pericardial sac. PF contains myocardial-derived factors. MicroRNAs (miRNAs) are negative post-transcriptional regulators of their target genes and they can be released into extracellular vesicles (EVs) contributing to cell-to-cell communication. We hypothesize that the PF contains miRNAs of myocardial origin and that represents a niche for the exchange of miRNAs between heart cells. In order to investigate whether PF contains functionally active miRNAs, miRNA expression profiles on PF samples collected from three patients undergoing aortic valve replacement (AVR) surgery performed during cardiopulmonary-bypass (CPB), were genereted.
Project description:An understanding of immunological mechanisms in kidney diseases has advanced using mouse kidneys. However, the profiling of immune cell subsets in human kidneys remains undetermined, particularly compared with mouse kidneys. Normal human kidneys were obtained from radically nephrectomised patients with urogenital malignancy (n = 15). Subsequently, human kidney immune cell subsets were analysed using multicolor flow cytometry and compared with subsets from C57BL/6 or BALB/c mice under specific pathogen-free conditions. Twenty kidney sections from healthy kidney donors or subjects without specific renal lesions were additionally analysed by immunohistochemistry. In human kidneys, 47% ± 12% (maximum 63%) of immune cells were CD3+ T cells. Kidney CD4+ and CD8+ T cells comprised 44% and 56% of total T cells. Of these, 47% ± 15% of T cells displayed an effector memory phenotype (CCR7- CD45RA- CD69-), and 48% ± 19% were kidney-resident cells (CCR7- CD45RA- CD69+). However, the proportions of human CD14+ and CD16+ myeloid cells were approximately 10% of total immune cells. A predominance of CD3+ T cells and a low proportion of CD14+ or CD68+ myeloid cells were also identified in healthy human kidney sections. In mouse kidneys, kidney-resident macrophages (CD11blow F4/80high) were the most predominant subset (up to 50%) but the proportion of CD3+ T cells was less than 20%. These results will be of use in studies in which mouse results are translated into human cases under homeostatic conditions or with disease.
Project description:Pericardial fluid (PF) is considered as biochemical window of heart. Knowledge of the entire protein content, the proteome of human PF, would give insights into heart and cardiovascular diseases. To date, there have been limited attempt to perform an in-depth analysis of the PF proteome. In this study, a SDS-PAGE-LC-MS/MS platform was utilized to explore abundant protein-depleted PF samples and showed great coverage of low-abundance proteins. In total, 1,007 non-redundant proteins were identified with at least two peptides, generating the first human PF proteome. Data processing: The mass spectra were searched using MaxQuant (v1.2.2.5) against the human subset of the Uniprot database (2012/05/16), which contains 87,187 entries. The search parameters were set as follows: peptide (parent ion) tolerance of 20 ppm, fragment ion tolerance of 0.5 Da, two missed cleavages were allowed, fixed modification of carbamidomethylation on Cys (+57 Da), and a differential modification of oxidation on Met (+16 Da). The false discovery rates (FDR) for both peptides and proteins were evaluated by searching against the combined database with the reversed amino acid sequence, and calculated by MaxQuant. To get high-confidence peptide and protein identifications, the cutoffs used were 1% for peptides and 1% for proteins. Absolute protein amounts were calculated as the sum of all peptide peak intensities divided by the number of theoretically observable tryptic peptides (intensity based absolute quantification, or iBAQ).
Project description:While immunotherapies such as immune checkpoint blockade and adoptive T-cell therapy improve survival for a subset of human malignancies, many patients fail to respond. Phagocytes including dendritic cells (DC), monocytes, and macrophages (MF) orchestrate innate and adaptive immune responses against tumors. However, tumor-derived factors may limit immunotherapy effectiveness by altering phagocyte signal transduction, development, and activity. Using Cytometry by Time-of-Flight, we found that tumor-derived GCSF altered myeloid cell distribution both locally and systemically. We distinguished a large number of GCSF-induced immune cell subset and signal transduction pathway perturbations in tumor-bearing mice, including a prominent increase in immature neutrophil/myeloid-derived suppressor cell (Neut/MDSC) subsets and tumor-resident PD-L1+ Neut/MDSCs. GCSF expression was also linked to distinct tumor-associated MF populations, decreased conventional DCs, and splenomegaly characterized by increased splenic progenitors with diminished DC differentiation potential. GCSF-dependent dysregulation of DC development was recapitulated in bone marrow cultures in vitro, using medium derived from GCSF-expressing tumor cell cultures. Importantly, tumor-derived GCSF impaired T-cell adoptive cell therapy effectiveness and was associated with increased tumor volume and diminished survival of mice with mammary cancer. Treatment with neutralizing anti-GCSF antibodies reduced colonic and circulatory Neut/MDSCs, normalized colonic immune cell composition and diminished tumor burden in a spontaneous model of mouse colon cancer. Analysis of human colorectal cancer patient gene expression data revealed a significant correlation between survival and low GCSF and Neut/MDSC gene expression. Our data suggest that normalizing GCSF bioactivity may improve immunotherapy in cancers associated with GCSF overexpression.SignificanceTumor-derived GCSF leads to systemic immune population changes. GCSF blockade restores immune populations, improves immunotherapy, and reduces tumor size, paralleling human colorectal cancer data. GCSF inhibition may synergize with current immunotherapies to treat GCSF-secreting tumors.
Project description:Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death in the world. Immunological analysis of the tumor microenvironment (immunoscore) shows great promise for improved prognosis and prediction of response to immunotherapy. However, the exact immune cell composition in NSCLC remains unclear. Here, we used flow cytometry to characterize the immune infiltrate in NSCLC tumors, non-cancerous lung tissue, regional lymph node, and blood. The cellular identity of >95% of all CD45+ immune cells was determined. Thirteen distinct immune cell types were identified in NSCLC tumors. T cells dominated the lung cancer landscape (on average 47% of all CD45+ immune cells). CD4+ T cells were the most abundant T cell population (26%), closely followed by CD8+ T cells (22%). Double negative CD4-CD8- T cells represented a small fraction (1.4%). CD19+ B cells were the second most common immune cell type in NSCLC tumors (16%), and four different B cell sub-populations were identified. Macrophages and natural killer (NK) cells composed 4.7 and 4.5% of the immune cell infiltrate, respectively. Three types of dendritic cells (DCs) were identified (plasmacytoid DCs, CD1c+ DCs, and CD141+ DCs) which together represented 2.1% of all immune cells. Among granulocytes, neutrophils were frequent (8.6%) with a high patient-to-patient variability, while mast cells (1.4%), basophils (0.4%), and eosinophils (0.3%) were less common. Across the cohort of patients, only B cells showed a significantly higher representation in NSCLC tumors compared to the distal lung. In contrast, the percentages of macrophages and NK cells were lower in tumors than in non-cancerous lung tissue. Furthermore, the fraction of macrophages with high HLA-DR expression levels was higher in NSCLC tumors relative to distal lung tissue. To make the method readily accessible, antibody panels and flow cytometry gating strategy used to identify the various immune cells are described in detail. This work should represent a useful resource for the immunomonitoring of patients with NSCLC.
Project description:BackgroundWe recently reported that large amounts of oral bacterial DNA can be found in thrombus aspirates of myocardial infarction patients. Some case reports describe bacterial findings in pericardial fluid, mostly done with conventional culturing and a few with PCR; in purulent pericarditis, nevertheless, bacterial PCR has not been used as a diagnostic method before.ObjectiveTo find out whether bacterial DNA can be measured in the pericardial fluid and if it correlates with pathologic-anatomic findings linked to cardiovascular diseases.MethodsTwenty-two pericardial aspirates were collected aseptically prior to forensic autopsy at Tampere University Hospital during 2009-2010. Of the autopsies, 10 (45.5%) were free of coronary artery disease (CAD), 7 (31.8%) had mild and 5 (22.7%) had severe CAD. Bacterial DNA amounts were determined using real-time quantitative PCR with specific primers and probes for all bacterial strains associated with endodontic disease (Streptococcus mitis group, Streptococcus anginosus group, Staphylococcus aureus/Staphylococcus epidermidis, Prevotella intermedia, Parvimonas micra) and periodontal disease (Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Treponema denticola, Fusobacterium nucleatus, and Dialister pneumosintes).ResultsOf 22 cases, 14 (63.6%) were positive for endodontic and 8 (36.4%) for periodontal-disease-associated bacteria. Only one case was positive for bacterial culturing. There was a statistically significant association between the relative amount of bacterial DNA in the pericardial fluid and the severity of CAD (p=0.035).ConclusionsOral bacterial DNA was detectable in pericardial fluid and an association between the severity of CAD and the total amount of bacterial DNA in pericardial fluid was found, suggesting that this kind of measurement might be useful for clinical purposes.
Project description:Inflammatory cells may contribute to secondary brain injury following cerebral ischemia. The C57Bl/6 mouse strain is known to exhibit a T helper 1-prone, pro-inflammatory type response to injury, whereas the FVB strain is relatively T helper 2-prone, or anti-inflammatory, in its immune response. We tested whether stroke outcome is more severe in C57Bl/6 than FVB mice. Male mice of each strain underwent sham surgery or 1 h occlusion of the middle cerebral artery followed by 23 h of reperfusion. Despite no difference in infarct size, C57Bl/6 mice displayed markedly greater functional deficits than FVB mice after stroke, as assessed by neurological scoring and hanging wire test. Total numbers of CD45(+) leukocytes tended to be larger in the brains of C57Bl/6 than FVB mice after stroke, but there were marked differences in leukocyte composition between the two mouse strains. The inflammatory response in C57Bl/6 mice primarily involved T and B lymphocytes, whereas neutrophils, monocytes and macrophages were more prominent in FVB mice. Our data are consistent with the concept that functional outcome after stroke is dependent on the immune cell composition which develops following ischemic brain injury.