Unknown

Dataset Information

0

Revealing the Relevant Spatiotemporal Scale Underlying Whole-Brain Dynamics


ABSTRACT: The brain rapidly processes and adapts to new information by dynamically transitioning between whole-brain functional networks. In this whole-brain modeling study we investigate the relevance of spatiotemporal scale in whole-brain functional networks. This is achieved through estimating brain parcellations at different spatial scales (100–900 regions) and time series at different temporal scales (from milliseconds to seconds) generated by a whole-brain model fitted to fMRI data. We quantify the richness of the dynamic repertoire at each spatiotemporal scale by computing the entropy of transitions between whole-brain functional networks. The results show that the optimal relevant spatial scale is around 300 regions and a temporal scale of around 150 ms. Overall, this study provides much needed evidence for the relevant spatiotemporal scales and recommendations for analyses of brain dynamics.

SUBMITTER: Kobeleva X 

PROVIDER: S-EPMC8569182 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC5574998 | biostudies-literature
| S-EPMC7609670 | biostudies-literature
| S-EPMC5595862 | biostudies-other
| S-EPMC4134509 | biostudies-literature
| S-EPMC6547050 | biostudies-literature
| S-EPMC6005365 | biostudies-literature
| S-EPMC5332159 | biostudies-literature
| S-EPMC5691364 | biostudies-literature
| S-EPMC5390704 | biostudies-other
| S-EPMC10802351 | biostudies-literature