Project description:We describe a platform technology, called metal-assisted and microwave-assisted evaporative crystallization (MA-MAEC), based on the combined use of silver nanoparticles and microwave heating for selective and rapid crystallization of small molecules. In this regard, the crystallization of a model small molecule (glycine) was achieved in several seconds. Glycine crystals grown on silver nanostructures with and without microwave heating were found to be larger than those grown on blank glass slides. The MA-MAEC technique has the potential to selectively grow the desired polymorphs of small molecules "on-demand" in a fraction of the time as compared to the conventional evaporative crystallization.
Project description:The Microcapillary Protein Crystallization System (MPCS) embodies a new semi-automated plug-based crystallization technology which enables nanolitre-volume screening of crystallization conditions in a plasticware format that allows crystals to be easily removed for traditional cryoprotection and X-ray diffraction data collection. Protein crystals grown in these plastic devices can be directly subjected to in situ X-ray diffraction studies. The MPCS integrates the formulation of crystallization cocktails with the preparation of the crystallization experiments. Within microfluidic Teflon tubing or the microfluidic circuitry of a plastic CrystalCard, approximately 10-20 nl volume droplets are generated, each representing a microbatch-style crystallization experiment with a different chemical composition. The entire protein sample is utilized in crystallization experiments. Sparse-matrix screening and chemical gradient screening can be combined in one comprehensive ;hybrid' crystallization trial. The technology lends itself well to optimization by high-granularity gradient screening using optimization reagents such as precipitation agents, ligands or cryoprotectants.
Project description:In this paper, we demonstrate the application of Metal-Assisted and Microwave-Accelerated Evaporative Crystallization (MA-MAEC) technique to rapid and selective crystallization of a small drug compound. i.e. acetaminophen. Subsequent characterization of the crystals by optical microscopy, powder X-ray diffraction (PXRD) and Raman spectroscopy showed quantitatively selective growth of different crystal forms at various experimental conditions. Acetaminophen crystals were grown predominantly as Form I (99%) on blank glass slides at room temperature. Form II crystals with 39% purity grown on SIFs using microwave energy.
Project description:Large-scale screening of hundreds or even thousands of crystallization conditions while with low sample consumption is in urgent need, in current structural biology research. Here we describe a fully-automated droplet robot for nanoliter-scale crystallization screening that combines the advantages of both automated robotics technique for protein crystallization screening and the droplet-based microfluidic technique. A semi-contact dispensing method was developed to achieve flexible, programmable and reliable liquid-handling operations for nanoliter-scale protein crystallization experiments. We applied the droplet robot in large-scale screening of crystallization conditions of five soluble proteins and one membrane protein with 35-96 different crystallization conditions, study of volume effects on protein crystallization, and determination of phase diagrams of two proteins. The volume for each droplet reactor is only ca. 4-8?nL. The protein consumption significantly reduces 50-500 fold compared with current crystallization stations.
Project description:This study demonstrates the application of metal-assisted and microwave-accelerated evaporative crystallization (MA-MAEC) technique to rapid crystallization of L-alanine on surface engineered silver nanostructures. In this regard, silver island films (SIFs) were modified with hexamethylenediamine (HMA), 1-undecanethiol (UDET), and 11-mercaptoundecanoic acid (MUDA), which introduced -NH(2), -CH(3) and -COOH functional groups to SIFs, respectively. L-Alanine was crystallized on these engineered surfaces and blank SIFs at room temperature and using MA-MAEC technique. Significant improvements in crystal size, shape, and quality were observed on HMA-, MUDA- and UDET-modified SIFs at room temperature (crystallization time = 144, 40 and 147 min, respectively) as compared to those crystals grown on blank SIFs. Using the MA-MAEC technique, the crystallization time of L-alanine on engineered surfaces were reduced to 17 sec for microwave power level 10 (i.e., duty cycle 100%) and 7 min for microwave power level 1 (duty cycle 10%). Raman spectroscopy and powder x-ray diffraction (XRD) measurements showed that L-Alanine crystals grown on engineered surfaces using MA-MAEC technique had identical characteristic peaks of L-alanine crystals grown using traditional evaporative crystallization.
Project description:L-Alanine is an important amino acid that plays a key role in the molecular structure of many proteins. Crystallized forms of this molecule are currently in high demand in chemical, pharmaceutics, and food industries. However, the traditional evaporative crystallization method takes up to several hours to complete and does not always consistently yield usable crystals. Using the metal-assisted and microwave-accelerated evaporative crystallization (MA-MAEC) technique, larger and better-organized L-alanine crystals were formed in a fraction of the time using room temperature crystallization. This technique may be applicable to organic molecules other than amino acids and thus will be able to produce the large amount of molecular crystals desired by industries today.
Project description:We report the application of our newly described crystallization technique, which employs silver island films (SIFs) and microwave heating, to rapid crystallization of L-arginine acetate (LAA). Using our technique, LAA crystals (~ 1.2 mm in length) were grown from a 20 μl solution in 1 min on surface functionalized SIFs. In control experiments (glass slides and at room temperature) the growth of LAA crystals (0.1-0.3 mm) took ~ 55 min.
Project description:We experimentally studied the effects of an externally applied electric field on protein crystallization and liquid-liquid phase separation (LLPS) and its crystallization kinetics. For a surprisingly weak alternating current (AC) electric field, crystallization was found to occur in a wider region of the phase diagram, while nucleation induction times were reduced, and crystal growth rates were enhanced. LLPS on the contrary was suppressed, which diminishes the tendency for a two-step crystallization scenario. The effect of the electric field is ascribed to a change in the protein-protein interaction potential.
Project description:The measured induction times in droplet-based microfluidic systems are stochastic and are not described by the deterministic population balances or moment equations commonly used to model the crystallization of amino acids, proteins, and active pharmaceutical ingredients. A stochastic model in the form of a Master equation is formulated for crystal nucleation in droplet-based microfluidic systems for any form of nucleation rate expression under conditions of time-varying supersaturation. An analytical solution is provided to describe the (1) time evolution of the probability of crystal nucleation, (2) the average number of crystals that will form at time t for a large number of droplets, (3) the induction time distribution, and (4) the mean, most likely, and median induction times. These expressions are used to develop methods for determining the nucleation kinetics. Nucleation kinetics are determined from induction times measured for paracetamol and lysozyme at high supersaturation in an evaporation-based high-throughput crystallization platform, which give low prediction errors when the nucleation kinetics were used to predict induction times for other experimental conditions. The proposed stochastic model is relevant to homogeneous and heterogeneous crystal nucleation in a wide range of droplet-based and microfluidic crystallization platforms.