LncRNA DDGC participates in premature ovarian insufficiency through regulating RAD51 and WT1
Ontology highlight
ABSTRACT: The list of long non-coding RNAs (lncRNAs) that participate in the function of ovarian granulosa cells (GCs) is rapidly expanding, but the mechanisms through which lncRNAs regulate GC function are not yet fully understood. Here, we recognized a minimally expressed lncRNA RP4-545C24.1 (which we named DDGC) in GCs from patients with biochemical premature ovarian insufficiency (bPOI). We further explored the role of lncRNA DDGC in GC function and its contribution to the development of bPOI. Mechanistically, silencing DDGC downregulated RAD51 by competitively binding with miR-589-5p, and this resulted in significant inhibition of DNA damage repair capacity. In addition, decreased expression of DDGC promoted ubiquitin-mediated degradation of Wilms tumor 1 (WT1) protein through interactions with heat shock protein 90 (HSP90), which led to aberrant differentiation of GCs. Moreover, DDGC was able to ameliorate the etoposide-induced DNA damage and apoptosis in vivo. Taken together, these findings provide new insights into the contribution of lncRNAs in POI pathogenesis. Graphical abstract The mechanisms through which lncRNAs participate in the pathogenesis of premature ovarian insufficiency (POI) are rarely reported. We have identified an lncRNA, DDGC, that plays dual roles in the DNA repair and differentiation of ovarian somatic cells, providing new insights into the contribution of lncRNAs in POI pathogenesis.
SUBMITTER: Li D
PROVIDER: S-EPMC8571528 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA