Ontology highlight
ABSTRACT: Background
High-throughput next-generation sequencing (HT-NGS) has the potential to detect a large variety of pathogens; however, the application of HT-NGS in lung transplant (LTx) recipients remains limited. We aimed to evaluate the value of HT-NGS for pathogen detection and diagnosis of pulmonary infection during early-stage post-lung transplantation. Methods
In this retrospective study, we enrolled 51 LTx recipients who underwent lung transplantation between January 2020 and December 2020. Bronchoalveolar lavage fluid (BALF) samples were collected for the detection of pathogens using both HT-NGS and conventional microbiological testing. The detection of pathogens and diagnostic performance of HT-NGS were compared with that of conventional methods. Results
HT-NGS provided a higher positive rate of pathogen detection than conventional microbiological testing (88.24% vs. 76.47%). The most common bacteria detected via HT-NGS during early-stage post-lung transplantation were Enterococcus, Staphylococcus, Pseudomonas and Klebsiella, while all fungi were Candida and all viruses were Herpesvirus. Uncommon pathogens, including Strongyloides, Legionella, and Mycobacterium abscesses were identified by HT-NGS. The sensitivity of HT-NGS for diagnosing pulmonary infection was significantly higher than that of conventional microbiological testing (97.14% vs. 68.57%; P < 0.001). For three LTx recipients, treatment regimens were adjusted according to the results of HT-NGS, leading to a complete recovery. Conclusion
HT-NGS is a highly sensitive technique for pathogen detection, which may provide diagnostic advantages, especially in LTx recipients, contributing to the optimization of treatment regimens against pulmonary infection during early-stage post-lung transplantation. Supplementary Information
The online version contains supplementary material available at 10.1186/s12890-021-01723-z.
SUBMITTER: Lian Q
PROVIDER: S-EPMC8572506 | biostudies-literature |
REPOSITORIES: biostudies-literature