Spatiotemporal prediction of COVID-19 cases using inter- and intra-county proxies of human interactions
Ontology highlight
ABSTRACT: Measurements of human interaction through proxies such as social connectedness or movement patterns have proved useful for predictive modeling of COVID-19, which is a challenging task, especially at high spatial resolutions. In this study, we develop a Spatiotemporal autoregressive model to predict county-level new cases of COVID-19 in the coterminous US using spatiotemporal lags of infection rates, human interactions, human mobility, and socioeconomic composition of counties as predictive features. We capture human interactions through 1) Facebook- and 2) cell phone-derived measures of connectivity and human mobility, and use them in two separate models for predicting county-level new cases of COVID-19. We evaluate the model on 14 forecast dates between 2020/10/25 and 2021/01/24 over one- to four-week prediction horizons. Comparing our predictions with a Baseline model developed by the COVID-19 Forecast Hub indicates an average 6.46% improvement in prediction Mean Absolute Errors (MAE) over the two-week prediction horizon up to 20.22% improvement in the four-week prediction horizon, pointing to the strong predictive power of our model in the longer prediction horizons. Measurements of human interaction through proxies such as social connectedness or movement patterns have proved useful for predictive modeling of COVID-19. In this study, the authors develop a spatiotemporal machine learning model to predict county level new cases in the US using a variety of predictive features.
SUBMITTER: Vahedi B
PROVIDER: S-EPMC8576047 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA