Unknown

Dataset Information

0

Urinary metabolomic signatures as indicators of injury severity following traumatic brain injury: A pilot study


ABSTRACT:

Background

Analysis of fluid metabolites has the potential to provide insight into the neuropathophysiology of injury in patients with traumatic brain injury (TBI).

Objective

Using a 1H nuclear magnetic resonance (NMR)-based quantitative metabolic profiling approach, this study determined (1) if urinary metabolites change during recovery in patients with mild to severe TBI; (2) whether changes in urinary metabolites correlate to injury severity; (3) whether biological pathway analysis reflects mechanisms that mediate neural damage/repair throughout TBI recovery.

Methods

Urine samples were collected within 7 days and at 6-months post-injury in male participants (n = 8) with mild-severe TBI. Samples were analyzed with NMR-based quantitative spectroscopy for metabolomic profiles and analyzed with multivariate statistical and machine learning-based analyses.

Results

Lower levels of homovanillate (R = −0.74, p ≤ 0.001), L-methionine (R = −0.78, p < 0.001), and thymine (R = −0.85, p < 0.001) negatively correlated to injury severity. Pathway analysis revealed purine metabolism to be a primary pathway (p < 0.01) impacted by TBI.

Conclusion

This study provides pilot data to support the use of urinary metabolites in clinical practice to better interpret biochemical changes underlying TBI severity and recovery. The discovery of urinary metabolites as biomarkers may assist in objective and rapid identification of TBI severity and prognosis. Thus, 1H NMR metabolomics has the potential to facilitate the adaptation of treatment programs that are personalized to the patient’s needs. Highlights • NMR-based metabolomics of urine can identify metabolic fingerprints associated with functional recovery following TBI.• Metabolic profiles in urine correlate to injury severity.• Biological pathway analysis reflects mechanisms that mediate neural damage and repair processes throughout recovery.• Metabolomics provides insight into the neuropathophysiology of injury in TBI patients.

SUBMITTER: Bykowski E 

PROVIDER: S-EPMC8578034 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC10960168 | biostudies-literature
| S-EPMC8098106 | biostudies-literature
| S-EPMC10243142 | biostudies-literature
| S-EPMC5260471 | biostudies-literature
| S-EPMC7341482 | biostudies-literature
| S-EPMC10523170 | biostudies-literature
| S-EPMC5545767 | biostudies-other
| S-EPMC6356886 | biostudies-literature
| S-EPMC5423316 | biostudies-literature
| S-EPMC6209298 | biostudies-literature