Project description:A series of metallosupramolecular [Fe?L?](BF?)? "click" cylinders have been synthesized in excellent yields (90%-95%) from [Fe(H?O)?](BF?)? and bis(bidentate) pyridyl-1,2,3-triazole ligands. All complexes were characterized by elemental analysis, IR, UV-vis, ¹H-, ¹³C- and DOSY-NMR spectroscopies and, in four cases, the structures confirmed by X-ray crystallography. Molecular modeling indicated that some of these "click" complexes were of similar size and shape to related biologically active pyridylimine-based iron(II) helicates and suggested that the "click" complexes may bind both duplex and triplex DNA. Cell-based agarose diffusion assays showed that the metallosupramolecular [Fe?L?](BF?)? "click" cylinders display no antifungal activity against S. cerevisiae. This observed lack of antifungal activity appears to be due to the poor stability of the "click" complexes in DMSO and biological media.
Project description:The dopamine D3 receptor (D3R) is a target of pharmacotherapeutic interest in a variety of neurological disorders including schizophrenia, Parkinson's disease, restless leg syndrome, and drug addiction. A common molecular template used in the development of D3R-selective antagonists and partial agonists incorporates a butylamide linker between two pharmacophores, a phenylpiperazine moiety and an extended aryl ring system. The series of compounds described herein incorporates a change to that chemical template, replacing the amide functional group in the linker chain with a 1,2,3-triazole group. Although the amide linker in the 4-phenylpiperazine class of D3R ligands has been previously deemed critical for high D3R affinity and selectivity, the 1,2,3-triazole moiety serves as a suitable bioisosteric replacement and maintains desired D3R-binding functionality of the compounds. Additionally, using mouse liver microsomes to evaluate CYP450-mediated phase I metabolism, we determined that novel 1,2,3-triazole-containing compounds modestly improves metabolic stability compared to amide-containing analogues. The 1,2,3-triazole moiety allows for the modular attachment of chemical subunit libraries using copper-catalyzed azide-alkyne cycloaddition click chemistry, increasing the range of chemical entities that can be designed, synthesized, and developed toward D3R-selective therapeutic agents.
Project description:A small family of [Co?(Lpytrz)?]6+ cylinders was synthesised from bis(bidentate) 2-pyridyl-1,2,3-triazole "click" ligands (Lpytrz) through an "assembly-followed-by-oxidation" method. The cylinders were characterised using ¹H, 13C, and DOSY NMR, IR, and UV-Vis spectroscopies, along with electrospray ionisation mass spectrometry (ESMS). Stability studies were conducted in dimethyl sulfoxide (DMSO) and D?O. In contrast to similar, previously studied, [Fe?(Lpytrz)?]4+ helicates the more kinetically inert [Co?(Lpytrz)?]6+ systems proved stable (over a period of days) when exposed to DMSO and were even more stable in D?O. The triply stranded [Co?(Lpytrz)?]6+ systems and the corresponding "free" ligands were tested for antimicrobial activity in vitro against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) microorganisms. Agar-based disk diffusion and Mueller-Hinton broth micro-dilution assays showed that the [Co?(Lpytrz)?]6+ cylinders were not active against either strain of bacteria. It is presumed that a high charge of the [Co?(Lpytrz)?]6+ cylinders is preventing them from crossing the bacterial cell membranes, rendering the compounds biologically inactive.
Project description:In the present study, a new series of 1,2,3-triazole derivatives was synthesized via a click one-pot reaction. The synthesized compounds were found to be active during molecular docking studies against targeted protein 1T69 by using the Molecular Operating Environment (MOE) software. The designed and synthesized compounds were characterized by using FT-IR, 1H-NMR and LC-MS spectra. The synthesized triazole moieties were further screened for their α-amylase and α-glucosidase inhibitory activities. The preliminary activity analysis revealed that all the compounds showed good inhibition activity, ranging from moderate to high depending upon their structures and concentrations and compared to the standard drug acarbose. Both in silico and in vitro analysis indicated that the synthesized triazole molecules are potent for DM type-II. Out of all the compounds, compound K-1 showed the maximum antidiabetic activity with 87.01% and 99.17% inhibition at 800 µg/mL in the α-amylase and α-glucosidase inhibition assays, respectively. Therefore these triazoles may be further used as promising molecules for development of antidiabetic compounds.
Project description:Cu(NO3)2 supported on natural phosphate, Cu(ii)/NP, was prepared by co-precipitation and applied as a heterogeneous catalyst for synthesizing xanthenes (2-3 h, 85-97%) through Knoevenagel-Michael cascade reaction of aromatic aldehydes with 1,3-cyclic diketones in ethanol under refluxing conditions. It was further used for regioselective synthesis of 1,4-disubstituted-1,2,3-triazoles (1-25 min, 95-99%) via a three-component reaction between organic halides, aromatic alkynes and sodium azide in methanol at room temperature. The proposed catalyst, Cu(ii)/NP, was characterized using X-ray fluorescence, X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, Brunauer-Emmett-Teller, Barrett-Joyner-Halenda and inductively coupled plasma analyses. Compared to other reports in literature, the reactions took place through a simple co-precipitation, having short reaction time (<3 hours), high reaction yield (>85%), and high recyclability of catalyst (>5 times) without significant decrease in the inherent property and selectivity of catalyst. The proposed protocols provided significant economic and environmental advantages.
Project description:Triazoles are biologically important compounds that play a crucial role in biomedical applications. In this study, we present an innovative and eco-friendly nanocatalyst system for synthesizing compounds via the click reaction. The system is composed of Arabic gum (AG), iron oxide magnetic nanoparticles (Fe3O4 MNPs), (3-chloropropyl) trimethoxysilane (CPTMS), 2-aminopyridine (AP), and Cu(i) ions. Using AP as an anchor for Cu(i) ions and Fe3O4 MNPs allows facile separation using an external magnet. The hydrophilic nature of the Fe3O4@AG/AP-Cu(i) nanocomposite makes it highly efficient in water as a green solvent. The highest reaction efficiency (95.0%) was achieved in H2O solvent with 50.0 mg of nanocatalyst for 60 min at room temperature. The reaction yield remained consistent for six runs, demonstrating the stability and effectiveness of the catalyst.
Project description:In the title coordination polymer, [CdCl(2)(C(8)H(8)N(4))(2)](n), the Cd(II) atom, lying on an inversion center, is coordinated by two Cl atoms and two triazole N atoms and two pyridyl N atoms from four 1-(4-pyridyl-meth-yl)-1,2,4-triazole (pmta) ligands in a distorted trans-CdCl(2)N(4) octa-hedral arrangement. The bridg-ing pmta ligands, with a dihedral angle between the triazole and pyridyl rings of 71.86 (8)°, link the Cd atoms into a 4(4) sheet parallel to (02). π-π inter-actions between the triazole rings [centroid-centroid distance = 3.428 (2) Å] connect the sheets.
Project description:To realise useful control over molecular motion in the future an extensive toolbox of both actionable molecules and stimuli-responsive units must be developed. Previously, our laboratory has reported 1,1'-disubstituted ferrocene (Fc) rotor units which assume a contracted/π-stacked conformation until complexation of cationic metal ions causes rotation about the Ferrocene (Fc) molecular 'ball-bearing'. Herein, we explore the potential of using the photochemical ejection of [Ru(2,2'-bipyridyl)₂]2+ units as a stimulus for the rotational contraction of new ferrocene rotor units. Fc rotors with both 'regular' and 'inverse' 2-pyridyl-1,2,3-triazole binding pockets and their corresponding [Ru(2,2'-bipyridyl)₂]2+ complexes were synthesised. The rotors and complexes were characterised using nuclear magnetic resonance (NMR) and ultraviolet (UV)-visible spectroscopies, Electro-Spray Ionisation Mass Spectrometry (ESI⁻MS), and electrochemistry. The 1,1'-disubstituted Fc ligands were shown to π-stack both in solution and solid state. Density Functional Theory (DFT) calculations (CAM-B3LYP/6-31G(d)) support the notion that complexation to [Ru(2,2'-bipyridyl)₂]2+ caused a rotation from the syn- to the anti-conformation. Upon photo-irradiation with UV light (254 nm), photo-ejection of the [Ru(2,2'-bipyridyl)₂(CH₃CN)₂]2+ units in acetonitrile was observed. The re-complexation of the [Ru(2,2'-bipyridyl)₂]2+ units could be achieved using acetone as the reaction solvent. However, the process was exceedingly slowly. Additionally, the Fc ligands slowly decomposed when exposed to UV irradiation meaning that only one extension and contraction cycle could be completed.
Project description:Described herein is the design and synthesis of a discrete heterobifunctional PEG-based pyridyl disulfide/amine-containing linker that can be used in the Cu-free click preparation of bioconjugates. The title PEG-based pyridyl disulfide amine linker is a potentially useful reagent for preparing water-soluble disulfide-linked cargos. It may be particularly valuable in expanding the field of Cu-free click-based bioconjugations to include reductively labile antibody, polymer, or nanoparticle-based drug conjugates.
Project description:An azide terminated ethylene oxide-tetrahydrofuran copolymer with urethane segments (ATUPET) as a novel binder pre-polymer, has been prepared through ethylene oxide-tetrahydrofuran random copolymer (PET) end-capping modification via one-pot method. The structure characterization of the modifier has been analyzed by FTIR, 1H NMR, 13C NMR and GPC. In comparison with PET, ATUPET has a slightly higher viscosity because it has additional hydrogen bonding interaction generated by the urethane in ATUPET. Triazole cross-linked elastomers based on ATUPET with various functional molar ratios were prepared using tripropargylamine as a curing agent and cross-linker. Mechanical properties indicate that the modulus E and tensile strength σ b exhibit a parabolic dependence with the increase in R. At around the stoichiometric ratio, the modulus E and tensile strength σ b reach a maximum and the elongation at break exhibit an acceptable value at the same time. Swelling tests demonstrate that the apparent cross-linking densities (N0) have a maximum value at the stoichiometric ratio. Thermal analysis shows that the ATUPET prepolymer and its polytriazoles elastomers exhibit a satisfactory stability. The results demonstrated that ATUPET might be a promising polymeric binder for future propellant formulations especially in the field of isocyanate-free curing technology.