An Acylhydrazone-Based Fluorescent Sensor for Sequential Recognition of Al3+ and H2PO4.
Ontology highlight
ABSTRACT: A novel acylhydrazone-based fluorescent sensor NATB was designed and synthesized for consecutive sensing of Al3+ and H2PO4-. NATB displayed fluorometric sensing to Al3+ and could sequentially detect H2PO4- by fluorescence quenching. The limits of detection for Al3+ and H2PO4- were determined to be 0.83 and 1.7 μM, respectively. The binding ratios of NATB to Al3+ and NATB-Al3+ to H2PO4- were found to be 1:1. The sequential recognition of Al3+ and H2PO4- by NATB could be repeated consecutively. In addition, the practicality of NATB was confirmed with the application of test strips. The sensing mechanisms of Al3+ and H2PO4- by NATB were investigated through fluorescence and UV-Visible spectroscopy, Job plot, ESI-MS, 1H NMR titration, and DFT calculations.
SUBMITTER: Choe D
PROVIDER: S-EPMC8585233 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA