Coexisting multi-states in catalytic hydrogen oxidation on rhodium
Ontology highlight
ABSTRACT: Catalytic hydrogen oxidation on a polycrystalline rhodium foil used as a surface structure library is studied by scanning photoelectron microscopy (SPEM) in the 10−6 mbar pressure range, yielding spatially resolved X-ray photoemission spectroscopy (XPS) measurements. Here we report an observation of a previously unknown coexistence of four different states on adjacent differently oriented domains of the same Rh sample at the exactly same conditions. A catalytically active steady state, a catalytically inactive steady state and multifrequential oscillating states are simultaneously observed. Our results thus demonstrate the general possibility of multi-states in a catalytic reaction. This highly unusual behaviour is explained on the basis of peculiarities of the formation and depletion of subsurface oxygen on differently structured Rh surfaces. The experimental findings are supported by mean-field micro-kinetic modelling. The present observations raise the interdisciplinary question of how self-organising dynamic processes in a heterogeneous system are influenced by the permeability of the borders confining the adjacent regions. Catalytic reactions may exhibit oscillations in the reaction rate even at constant external parameters. Here, the authors observe and explain the coexistence of such oscillations and the steady states of catalytic activity in H2 oxidation on differently structured grains of a polycrystalline Rh foil.
SUBMITTER: Winkler P
PROVIDER: S-EPMC8586342 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA