Unknown

Dataset Information

0

Exploring microsatellite instability in patients with advanced hepatocellular carcinoma and its tumor microenvironment.


ABSTRACT:

Background and aim

Immune checkpoint inhibitors and their combination with other agents have recently been available in advanced hepatocellular carcinoma (HCC). Hence, a thorough understanding of the tumor microenvironment based on tumor samples is yet to be achieved. This study aimed to explore the tumor microenvironment in advanced HCC in terms of microsatellite instability-high (MSI-H) by using tumor samples from advanced HCC patients eligible for systemic therapy.

Methods

MSI-H was assessed by polymerase chain reaction, and the expression of mismatch repair proteins, PD-L1, CD8, VEGF, and HLA-class1 was evaluated by immunohistochemistry. Whole-exome sequencing was performed for MSI-H tumor samples.

Results

Of 50 patients, one (2.0%) was confirmed with MSI-H. In the MSI-H advanced HCC tumor, a high tumor mutation burden, infiltration of CD8+ lymphocytes, and low expression of VEGF were identified. Although PD-L1 expression was negative, there was shrinkage of tumor following pembrolizumab. However, another tumor nonresponsive to pembrolizumab was present simultaneously. Checking the Cancer Genome Atlas (TCGA) database, we found a similar case to this patient. The TCGA case had unique gene features of miR-21 and miR-155 overexpression and hypermethylation of the MSH2 gene.

Conclusion

We identified a very small number of MSI-H cases in HCC using one tumor biopsy sample for each patient with advanced HCC. In addition, epigenetic aberrations possibly lead to MSI-H in HCC patients. Since different HCC clones might coexist in the liver, sampling from multiple tumors should be considered to clarify the true proportion of MSI-H in HCC and to analyze tumor microenvironments.

SUBMITTER: Mukai S 

PROVIDER: S-EPMC8593775 | biostudies-literature | 2021 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Exploring microsatellite instability in patients with advanced hepatocellular carcinoma and its tumor microenvironment.

Mukai Shohei S   Kanzaki Hiroaki H   Ogasawara Sadahisa S   Ishino Takamasa T   Ogawa Keita K   Nakagawa Miyuki M   Fujiwara Kisako K   Unozawa Hidemi H   Iwanaga Terunao T   Sakuma Takafumi T   Fujita Naoto N   Koroki Keisuke K   Kobayashi Kazufumi K   Kanogawa Naoya N   Kiyono Soichiro S   Nakamura Masato M   Kondo Takayuki T   Saito Tomoko T   Nakagawa Ryo R   Suzuki Eiichiro E   Ooka Yoshihiko Y   Muroyama Ryosuke R   Nakamoto Shingo S   Tawada Akinobu A   Chiba Tetsuhiro T   Arai Makoto M   Kato Jun J   Shiina Manayu M   Ota Masayuki M   Ikeda Jun-Ichiro JI   Takiguchi Yuichi Y   Ohtsuka Masayuki M   Kato Naoya N  

JGH open : an open access journal of gastroenterology and hepatology 20211001 11


<h4>Background and aim</h4>Immune checkpoint inhibitors and their combination with other agents have recently been available in advanced hepatocellular carcinoma (HCC). Hence, a thorough understanding of the tumor microenvironment based on tumor samples is yet to be achieved. This study aimed to explore the tumor microenvironment in advanced HCC in terms of microsatellite instability-high (MSI-H) by using tumor samples from advanced HCC patients eligible for systemic therapy.<h4>Methods</h4>MSI-  ...[more]

Similar Datasets

| S-EPMC9807723 | biostudies-literature
| S-EPMC9281179 | biostudies-literature
| S-EPMC10600115 | biostudies-literature
| S-EPMC8905789 | biostudies-literature
| S-EPMC4305835 | biostudies-literature
| S-EPMC9950271 | biostudies-literature
| S-EPMC9012745 | biostudies-literature
| S-EPMC10359987 | biostudies-literature
| S-EPMC5920207 | biostudies-literature
| S-EPMC7712177 | biostudies-literature