Rational Design of a Confacial Pentaoctahedron: Anisotropic Exchange in a Linear ZnII FeIII FeIII FeIII ZnII Complex.
Ontology highlight
ABSTRACT: The first confacial pentaoctahedron comprised of transition metal ions namely ZnII FeIII A FeIII B FeIII A ZnII has been synthesized by using a dinucleating nonadentate ligand. The face-sharing bridging mode enforces short ZnII ⋅⋅⋅FeIII A and FeIII A ⋅⋅⋅FeIII B distances of 2.83 and 2.72 Å, respectively. Ab-initio CASSCF/NEVPT2 calculations provide significant negative zero-field splittings for FeIII A and FeIII B with |DA |>|DB | with the main component along the C3 axis. Hence, a spin-Hamiltonian comprised of anisotropic exchange, zero-field, and Zeeman term was employed. This allowed by following the boundary conditions from the theoretical results the simulation in a theory-guided parameter determination with Jxy =+0.37, Jz =-0.32, DA =-1.21, EA =-0.24, DB =-0.35, and EB =-0.01 cm-1 supported by simulations of high-field magnetic Mössbauer spectra recorded at 2 K. The weak but ferromagnetic FeIII A FeIII B interaction arises from the small bridging angle of 84.8° being at the switch from anti- to ferromagnetic for the face-sharing bridging mode.
SUBMITTER: Walleck S
PROVIDER: S-EPMC8596665 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA