Project description:Objectives:To characterize the mobile colistin resistance gene mcr-5 in Aeromonas hydrophila from backyard pigs in rural areas of China. Methods:Pig faecal samples from 194 households were directly tested for the presence of mcr-5 by PCR assay and the phenotypic antimicrobial susceptibility profiles of the mcr-5-positive isolates were determined using the broth dilution method. The genomic location and transferability of mcr-5 were analysed by S1-PFGE with Southern blotting and DNA hybridization, and natural transformation, respectively. One strain isolated from an mcr-5-positive sample was subjected to WGS and the stability of the mcr-5-harbouring plasmid over successive generations was examined by subculturing. Results:One mcr-5-positive A. hydrophila isolate showing resistance, with a colistin MIC of 4?mg/L, was isolated from a backyard pig faecal sample. mcr-5 was located on a 7915?bp plasmid designated pI064-2, which could naturally transform into a colistin-susceptible A. hydrophila strain of porcine origin and mediated colistin resistance in both the original isolate and its transformants. The plasmid backbone (3790?bp) of pI064-2 showed 81% nucleotide sequence identity to the corresponding region of the ColE2-type plasmid pAsa1 from Aeromonas salmonicida, while similar replication primases are widely distributed among aeromonads, Enterobacteriaceae and Pseudomonas species. Conclusions:To the best of our knowledge, this is the first identification of the novel colistin resistance gene mcr-5 in an A. hydrophila isolate from the faeces of a backyard pig. mcr-5 is expected to be able to disseminate among different bacterial species and genera.
Project description:Aeromonas hydrophila, a heterotrophic and Gram-negative bacterium, has attracted considerable attention owing to the increasing prevalence of reported infections. Colistin is a last-resort antibiotic that can treat life-threatening infections caused by multidrug-resistant Gram-negative bacteria. However, the mechanisms underlying colistin resistance in A. hydrophila remain unclear. The present study reveals four novel colistin resistance mechanisms in A. hydrophila: (i) EnvZ/OmpR upregulates the expression of the arnBCADTEF operon to mediate lipopolysaccharide (LPS) modification by 4-amino-4-deoxy-l-arabinose, (ii) EnvZ/OmpR regulates the expression of the autotransporter gene3832 to decrease outer membrane permeability in response to colistin, (iii) deletion of envZ/ompR activates PhoP/PhoQ, which functions as a substitute two-component system to mediate the addition of phosphoethanolamine to lipid A via pmrC, and (iv) the mlaFD173A mutant confers high-level colistin resistance via upregulation of the Mla pathway. The EnvZ/OmpR two-component system-mediated resistance mechanism is the leading form of colistin resistance in A. hydrophila, which enables it to rapidly generate low- to medium-level colistin resistance. As colistin concentrations in the environment continue to rise, antibiotic resistance mediated by EnvZ/OmpR becomes insufficient to ensure bacterial survival. Consequently, A. hydrophila has developed an mlaF mutation that results in high-level colistin resistance. Our findings indicate that A. hydrophila can thrive in a complex environment through various colistin resistance mechanisms.
Project description:The interactions of pathogens and phagocytes are complex. Our study demonstrated that Aeromonas hydrophila B11 can survive in the macrophagocytes of Tilapia mossambica. To explore the regulatory processes of A. hydrophila survival in the macrophagocytes, we used the mini-Tn10 transposon mutagenesis system to build a mutant library by mixing Escherichia coli Sm10 (pLOFKm) and A. hydrophila B11. In total, 102 mutant colonies were detected, and 11 of them showed reduced survival in macrophagocytes. The mutant with the most severe phenotype, AM73, was chosen for further research. The ORF interrupted by mini-Tn10 in AM73 was approximately 960 bp and was deposited in GenBank with the accession number SRP049226. The 319 amino acid protein encoded by the ORF showed a high degree of identity (89%) with proteins in the histone deacetylase/AcuC/AphA family of A. hydrophila subsp. hydrophila ATCC7966. A strain (AC73) in which the acuC mutation was complemented was constructed by generating the recombinant expression plasmid pACYC184-acuC and introducing it into the AM73 mutant strain. Our experiments revealed that strain AM73 was deficient in biofilm formation, adhesion, survival in macrophagocytes, and virulence compared with A. hydrophila B11, and all of these biological properties were improved in strain AC73. The expression of 10 significant virulence genes was significantly inhibited in strain AM73. The results indicated that AcuC was an important regulatory protein contributing to the pathogenicity of A. hydrophila.
Project description:In this study, we demonstrated that the surface-expressed enolase from diarrheal isolate SSU of Aeromonas hydrophila bound to human plasminogen and facilitated the latter's tissue-type plasminogen activator-mediated activation to plasmin. The bacterial surface-bound plasmin was more resistant to the action of its specific physiological inhibitor, the antiprotease alpha(2)-antiplasmin. We found that immunization of mice with purified recombinant enolase significantly protected the animals against a lethal challenge dose of wild-type (WT) A. hydrophila. Minimal histological changes were noted in organs from mice immunized with enolase and then challenged with WT bacteria compared to severe pathological changes found in the infected and nonimmunized group of animals. This correlated with the smaller bacterial load of WT bacteria in the livers and spleens of enolase-immunized mice than that found in the nonimmunized controls. We also showed that the enolase gene could potentially be important for the viability of A. hydrophila SSU as we could delete the chromosomal copy of the enolase gene only when another copy of the targeted gene was supplied in trans. By site-directed mutagenesis, we altered five lysine residues located at positions 343, 394, 420, 427, and 430 of enolase in A. hydrophila SSU; the mutated forms of enolase were hyperexpressed in Escherichia coli, and the proteins were purified. Our results indicated that lysine residues at positions 420 and 427 of enolase were crucial in plasminogen-binding activity. We also identified a stretch of amino acid residues ((252)FYDAEKKEY(260)) in the A. hydrophila SSU enolase involved in plasminogen binding. To our knowledge, this is the first report of the direct involvement of surface-expressed enolase in the pathogenesis of A. hydrophila SSU infections and of any gram-negative bacteria in general.
Project description:Phasins or PhaPs are a group of amphiphilic proteins that are found attached to the surface of microbial polyhydroxyalkanoate (PHA) granules. They have both structural and regulatory functions and can affect intracellular PHA accumulation and mediate protein folding. The molecular basis for the diverse functions of the PhaPs has not been fully understood due to the lack of the structural knowledge. Here we report the structural and biochemical studies of the PhaP cloned from Aeromonas hydrophila (PhaPAh), which is utilized in protein and tissue engineering. The crystal structure of PhaPAh was revealed to be a tetramer with 8 α-helices adopting a coiled-coil structure. Each monomer has a hydrophobic and a hydrophilic surface, rendering the surfactant properties of the PhaPAh monomer. Based on the crystal structure, we predicted three key amino acid residues and obtained mutants with enhanced stability and improved emulsification properties. The first PhaP crystal structure, as reported in this study, is an important step towards a mechanistic understanding of how PHA is formed in vivo and why PhaP has such unique surfactant properties. At the same time, it will facilitate the study of other PhaP members that may have significant biotechnological potential as bio-surfactants and amphipathic coatings.
Project description:Despite the abundant amount of knowledge about inducible chromosomally mediated beta-lactamases among Aeromonas species, extended-spectrum beta-lactam-resistant A. hydrophila strains selected in clinical practice were rarely reported. In the present study, two strains of A. hydrophila, A136 and A139, with markedly different susceptibilities to extended-spectrum cephalosporins were isolated from blood and the tip segment of an arterial catheter of a burn patient. Another strain (A136m) was selected in vitro by culturing A136 in a subinhibitory concentration of cefotaxime, the beta-lactam agent administered for the treatment of Aeromonas bacteremia in this patient. Typing studies by arbitrarily primed PCR and pulsed-field gel electrophoresis indicated a clonal relationship among strains A136, A136m, and A139. These strains were identified to be of DNA hybridization group 1. Wild-type strain A136 was resistant only to ampicillin and cephamycins, but A136m and A139 were highly resistant to the expanded- and broad-spectrum cephalosporins. The presence of increased beta-lactamase activity in A139 suggests that A139 is a derepressed mutant which overexpresses beta-lactamases. These results call attention to the use of beta-lactam agents for the treatment of invasive Aeromonas infections.
Project description:Gene inactivation and complementation experiments showed that the tripartite AheABC efflux pump of Aeromonas hydrophila extruded at least 13 substrates, including nine antibiotics. The use of phenylalanine-arginine-beta-naphthylamide (PAbetaN) revealed an additional system(s) contributing to intrinsic resistance. This is the first analysis of the role of multidrug efflux systems in Aeromonas spp.
Project description:The characterization of adhesion between pathogenic bacteria and the host is critical. Pathogenic Aeromonas hydrophila was shown to adhere in vitro to the mucus of Anguilla japonica. To further investigate the adhesion mechanisms of A. hydrophila, a mini-Tn10 transposon mutagenesis system was used to generate an insertion mutant library by cell conjugation. Seven mutants that were impaired in adhesion to mucus were selected out of 332 individual colonies, and mutant M196 was the most severely impaired strain. National Center for Biotechnology Information (NCBI) blast analysis showed that mutant M196 was inserted by mini-Tn10 with an ORF of approximately 1,005 bp (GenBank accession numbers KP280172). This ORF is predicted to encode a protein consist of 334 amino acid, which displays the highest identity (98%) with the RbsR of A. hydrophila ATCC 7966. Random inactivation of rbsR gene affected the pleiotropic phenotypes of A. hydrophila. The adhesion ability and the survival level of the rbsR gene mutant (M196) were attenuated compared with the wild-type and rbsR complementary type. The findings of this study indicated that RbsR plays roles in the bacterial adhesion and intracellular survival of A. hydrophila.
Project description:Mesophilic Aeromonas spp. constitutively express a single polar flagellum that helps the bacteria move to more favorable environments and is an important virulence and colonization factor. Certain strains can also produce multiple lateral flagella in semisolid media or over surfaces. We have previously reported 16 genes (flgN to flgL) that constitute region 1 of the Aeromonas hydrophila AH-3 polar flagellum biogenesis gene clusters. We identified 39 new polar flagellum genes distributed in four noncontiguous chromosome regions (regions 2 to 5). Region 2 contained six genes (flaA to maf-1), including a modification accessory factor gene (maf-1) that has not been previously reported and is thought to be involved in glycosylation of polar flagellum filament. Region 3 contained 29 genes (fliE to orf29), most of which are involved in flagellum basal body formation and chemotaxis. Region 4 contained a single gene involved in the motor stator formation (motX), and region 5 contained the three master regulatory genes for the A. hydrophila polar flagella (flrA to flrC). Mutations in the flaH, maf-1, fliM, flhA, fliA, and flrC genes, as well as the double mutant flaA flaB, all caused loss of polar flagella and reduction in adherence and biofilm formation. A defined mutation in the pomB stator gene did not affect polar flagellum motility, in contrast to the motX mutant, which was unable to swim even though it expressed a polar flagellum. Mutations in all of these genes did not affect lateral flagellum synthesis or swarming motility, showing that both A. hydrophila flagellum systems are entirely distinct.
Project description:Outer membrane proteins (OMPs) play essential roles in antibiotic resistance, particularly in Gram-negative bacteria; however, they still have many unidentified functions regarding their behavior in response to antibiotic stress. In the current work, quantitative tandem mass tag labeling-based mass spectrometry was used to compare the outer membrane related proteins between an oxytetracycline-resistant (OXY-R) and its original control stain (OXY-O) in Aeromonas hydrophila. Consequently, a total of 261 commonly altered proteins in two biological repeats were identified including 29 proteins that increased and 28 that decreased. Gene ontology analysis showed that the expression of transport proteins was significantly reduced, and translation-related proteins were downregulated in the OXY-R strain. After using western blotting to validate selected altered proteins, eight OMP-related genes were knocked out and their roles in antibiotic resistance were further evaluated. The survival assays showed that some mutants such as ?AHA_4281, ?AHA_2766, ?AHA_2282, ?AHA_1181, and ?AHA_1280 affected the susceptibility of A. hydrophila to antimicrobials. Moreover, the minimum inhibitory concentration assay showed that these candidate mutants also respond differently to other types of antibiotics. Our results reveal several novel outer membrane related proteins of A. hydrophila that play important roles in antibiotic resistance, and as such, may be helpful for screening studies to identify novel drug targets.