Project description:BackgroundResidents of nursing homes are one of the most vulnerable groups during the severe acute syndrome coronavirus 2 (SARS-CoV-2) pandemic. The aim of this study was to characterize cellular and humoral immune responses in >70-year-old participants before vaccination, after first and second vaccination with BNT162b2, in contrast to second-dose-vaccinated participants younger than 60 years.MethodsPeripheral blood mononuclear cells of 45 elderly and 40 younger vaccinees were analyzed by IFNγ ELISpot, specific immunoglobulin G antibody titers against SARS-CoV-2 spike protein, and neutralization abilities against SARS-CoV-2 wild-type (WT) and Delta variant (B.1.617.2).ResultsOur results clearly demonstrate a significantly increased T cell response, IgG titers, and neutralization activities against SARS-CoV-2 WT and Delta between first and second vaccination with BNT162b2 in elderly vaccinees, thereby highlighting the importance of the second booster. Interestingly, similar cellular and humoral immune responses against SARS-CoV-2 WT and Delta were found after the second vaccine dose in the young and elderly groups.ConclusionsOur data demonstrate a full picture of cellular and humoral immune responses of BNT162b2-vaccinees in two age cohorts. In all vaccines, SARS-CoV-2 WT-specific antibodies with similar neutralizing activity were detected in all vaccinees. After the second vaccination, neutralization titers against SARS-CoV-2 Delta were impaired in both age groups compared with SARS-CoV-2 WT, thereby emphasizing the need for an additional booster to overcome rising variants of SARS-CoV-2.
Project description:Heterologous SARS-CoV-2 vaccine approaches with a second mRNA-based vaccine have been favored in the recommendations of many countries over homologous vector-based ChAdOx1 nCoV-19 vaccination after reports of thromboembolic events and lower efficacy of this regimen. In the middle of 2021, the SARS-CoV-2 Delta variant of concern (VoC) has become predominant in many countries worldwide. Data addressing the neutralization capacity of a heterologous ChAdOx1 nCoV-19/mRNA-based vaccination approach against the Delta VoC in comparison to the widely used homologous mRNA-based vaccine regimen are limited. Here, we compare serological immune responses of a cohort of ChAdOx1 nCoV-19/BNT162b2-vaccinated participants with those of BNT162b2/BNT162b2 vaccinated ones and show that neutralization capacity against the Delta VoC is significantly increased in sera of ChAdOx1 nCoV-19/BNT162b2-vaccinated participants. This overall effect can be attributed to ChAdOx1 nCoV-19/BNT162b2-vaccinated women, especially those with more severe adverse effects leading to sick leave following second immunization.
Project description:SARS-CoV-2 mRNA vaccines are administered as effective prophylactic measures for reducing virus transmission rates and disease severity. To enhance the durability of post-vaccination immunity and combat SARS-CoV-2 variants, boosters have been administered to two-dose vaccinees. However, long-term humoral responses following booster vaccination are not well characterized. A 16-member cohort of healthy SARS-CoV-2 naïve participants were enrolled in this study during a three-dose BNT162b2 vaccine series. Serum samples were collected from vaccinees over 420 days and screened for antigen (Ag)-specific antibody titers, IgG subclass distribution, and neutralizing antibody (nAb) responses. Vaccine boosting restored peak Ag-specific titers with sustained α-RBD IgG and IgA antibody responses when measured at six months post-boost. RBD- and spike-specific IgG4 antibody levels were markedly elevated in three-dose but not two-dose immune sera. Although strong neutralization responses were detected in two- and three-dose vaccine sera, these rapidly decayed to pre-immune levels by four and six months, respectively. While boosters enhanced serum IgG Ab reactivity and nAb responses against variant strains, all variants tested showed resistance to two- and three-dose immune sera. Our data reflect the poor durability of vaccine-induced nAb responses which are a strong predictor of protection from symptomatic SARS-CoV-2 infection. The induction of IgG4-switched humoral responses may permit extended viral persistence via the downregulation of Fc-mediated effector functions.
Project description:While mRNA vaccines are highly efficacious against short-term COVID-19, long-term immunogenicity is less clear. We compared humoral immunogenicity between BNT162b2 and mRNA-1273 vaccines 6 months after the first vaccine dose, examining the wild-type strain and multiple Delta-variant lineages. Using samples from a prospective observational cohort study of adult paramedics, we included COVID-19-negative participants who received two BNT162b2 or mRNA-1273 vaccines, and provided a blood sample 170 to 190 days post first vaccine dose. We compared wild-type spike IgG concentrations using the Mann-Whitney U test. We also compared secondary outcomes of: receptor binding domain (RBD) wild-type antibody concentrations, and inhibition of angiotensin-converting enzyme 2 (ACE-2) binding to spike proteins from the wild-type strain and five Delta-variant lineages. We included 571 adults: 475 BNT162b2 (83%) and 96 mRNA-1273 (17%) vaccinees, with a mean age of 39 (SD = 10) and 43 (SD = 10) years, respectively. Spike IgG antibody concentrations were significantly higher (P < 0.0001) for those who received mRNA-1273 (GM 601 BAU/mL [GSD 2.05]) versus BNT162b2 (GM 375 BAU/mL [GSD 2.33) vaccines. Results of RBD antibody comparisons (P < 0.0001), and inhibition of ACE-2 binding to the wild-type strain and all tested Delta lineages (all P < 0.0001), were consistent. Adults who received two doses of mRNA-1273 vaccines demonstrated improved wild-type and Delta variant-specific humoral immunity outcomes at 6 months compared with those who received two doses of the BNT162b2 vaccine. IMPORTANCE The BNT162b2 and mRNA-1273 mRNA SARS-CoV-2 vaccines have demonstrated high efficacy for preventing short-term COVID-19. However, comparative long-term effectiveness is unclear, especially pertaining to the Delta variant. We tested virus-specific antibody responses 6 months after the first vaccine dose and compared individuals who received the BNT162b2 and mRNA-1273 SARS-CoV-2 vaccines. We found that individuals who received the mRNA-1273 vaccine demonstrated superior serological markers at 6 months in comparison with those who received the BNT162b2 vaccine.
Project description:Vaccinating recovered patients previously infected by COVID-19 with mRNA vaccines to boost their immune response against wild-type viruses (WT), we aimed to investigate whether vaccine platform and time of vaccination affect immunogenicity against the SARS-CoV-2 WT and Delta variant (DV). Convalescent patients infected by COVID-19 were recruited and received one booster dose of the BNT162b2 (PC-B) or CoronaVac (PC-C) vaccines, while SARS-CoV-2 naïve subjects received two doses of the BNT162b2 (CN-B) or CoronaVac (CN-C) vaccines. The neutralizing antibody in sera against the WT and DV was determined with live virus neutralization assay (vMN). The vMN geometric mean titre (GMT) against WT in recovered individuals previously infected by COVID-19 reduced significantly from 60.0 (95% confidence interval (CI), 46.5-77.4) to 33.9 (95% CI, 26.3-43.7) at 6 months post recovery. In the PC-B group, the BNT162b2 vaccine enhanced antibody response against WT and DV, with 22.3-fold and 20.4-fold increases, respectively. The PC-C group also showed 1.8-fold and 2.2-fold increases for WT and DV, respectively, after receiving the CoronaVac vaccine. There was a 10.6-fold increase in GMT in the CN-B group and a 1.3-fold increase in the CN-C group against DV after full vaccination. In both the PC-B and PC-C groups, there was no difference between GMT against WT and DV after vaccination. Subjects in the CN-B and CN-C groups showed inferior GMT against DV compared with GMT against WT after vaccination. In this study, one booster shot effectively enhanced the pre-existing neutralizing activity against WT and DV in recovered subjects.
Project description:Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved rapidly, leading to viral lineages characterized by multiple mutations in the spike protein, which could potentially confer to the virus the ability to avoid the vaccine-induced immune response, making the vaccines less effective or ineffective. Here, we initially evaluated the neutralization capabilities in vitro by serum neutralization (SN) of six serum samples collected from recipients of the BNT162b2 vaccine against 11 SARS-CoV-2 isolates belonging to the major SARS-CoV-2 lineages that had been circulating in Italy. Then, we considered 30 additional serum samples by SN assay against the dominant B.1.617.2 (Delta) variant. A B.1 lineage isolate was used as a reference. In the first analysis, significant differences when compared with the reference strain (p > 0.05) were not evidenced; instead, when the panel of 30 sera was tested against the B.1.617.2 (Delta) variant, a significant (p = 0.0015) 2.38-fold reduction in neutralizing titres compared with the reference after the first vaccine dose was demonstrated. After the second vaccine dose, the reduction was not significant (p = 0.1835). This study highlights that the BNT162b2 vaccine stimulates a humoral response able to neutralize all tested SARS-CoV-2 variants, thus suggesting a prominent role in mitigating the impact of the SARS-CoV-2 pandemic in real-world conditions. Long-term follow-up is currently ongoing.