Ontology highlight
ABSTRACT: Objectives
This phase II clinical trial was conducted to study safety, tolerability, pharmacokinetics, and pharmacodynamics of vilobelimab, a recombinant monoclonal antibody against C5a, in patients with severe sepsis or septic shock.Design
Multicenter, randomized, and placebo-controlled study.Setting and participants
Eleven multidisciplinary ICUs across Germany. Adult patients with severe sepsis or septic shock and with early onset of infection-associated organ dysfunction.Main outcomes and measures
Patients were randomly assigned in a ratio of 2:1 to three subsequent dosing cohorts for IV vilobelimab or placebo receiving either 2 × 2 mg/kg (0 and 12 hr), 2 × 4 mg/kg (0 and 24 hr), and 3 × 4 mg/kg (0, 24, and 72 hr). Co-primary endpoints were pharmacodynamics (assessed by C5a concentrations), pharmacokinetics (assessed by vilobelimab concentrations), and safety of vilobelimab. Preliminary efficacy was evaluated by secondary objectives.Results
Seventy-two patients were randomized (16 patients for each vilobelimab dosing cohort and eight patients for each placebo dosing cohort). Vilobelimab application was associated with dosing dependent decrease in C5a compared with baseline (p < 0.001). Duration of C5a decrease increased with more frequent dosing. Membrane attack complex lysis capacity measured by 50% hemolytic complement was not affected. Vilobelimab was well tolerated with similar safety findings in all dose cohorts. No vilobelimab-specific adverse events emerged. For vilobelimab-treated patients, investigators attributed less treatment-emergent adverse events as related compared with placebo. Dosing cohorts 2 and 3 had the highest ICU-free and ventilator-free days. There was no difference in mortality, vasopressor-free days, or renal replacement therapy-free days between the groups.Conclusions and relevance
Administration of vilobelimab in patients with severe sepsis and septic shock selectively neutralizes C5a in a dose-dependent manner without blocking formation of the membrane attack complex and without resulting in detected safety issues. The data warrant further investigation of C5a inhibition in sepsis.
SUBMITTER: Bauer M
PROVIDER: S-EPMC8601347 | biostudies-literature |
REPOSITORIES: biostudies-literature